Die Nervenzelle


Referat / Aufsatz (Schule), 2000

6 Seiten


Leseprobe


Die Nervenzelle

Nervenzellen => Neuron, Ganglienzelle

Kommen bei allen vielzelligen Tieren vor, wo sie die Bausteine der Nerven- Systeme sind. Die Nervenzellen sind von Gliazellen umgeben, sie können durch einen Reiz erregt werden, diesen Reiz verarbeiten und als Erregung weiterleiten. Die Erregungsleitung erfolgt innerhalb einer Nervenzelle elektrisch, zwischen zwei verschiedenen Nervenzellen chemisch.

Zellkörper => Soma

Im Zellkörper liegt der Zellkern, der bei hochentwickelten Tieren & beim Menschen in ausgereiften Nervenzellen nicht mehr teilungsfähig ist. Im Zytoplasma (hier: Neuroplasma) liegen zahlreichen Mitochondrien, Golgi-Apparate mit fetthaltigen Vakuolen und neben Pigmenten besonders Charakteristische Strukturen, die sog. Nissl-Schollen (=besonders große Membranstapel des RE mit zahlreichen Ribosomen). Außerdem enthält der Zellkern einen großen Kleinkern.

Axon => Neurit

Wächst bei der Entwicklung der Zelle zuerst aus.

Es überträgt Erregungen zu anderen Nervenzellen oder zu Muskelzellen. Er ist von einer besonderen Isolierschicht (Schwannsche Zelle) umgeben. Damit wird der Neurit zum Achsenzylinder (Axon) der Nervenfaser.

Dieser Nervenfortsatz leitet bei jeder Nervenzelle die Erregung vom Zell- Körper des Neurons weg (zentrifugale Leitung)

Axone bilden mit ihren Nervenfasern die Neuriten, Länge d. Axon 1mm Bis 1 m lang.

Dendrit => Fortsätze die der Zelle die Erregungen zu leiten (zellulipetale Leitung). Sie

Sind kurz und stark verzweigt.

Gliazellen => gewebsähnliche Zellen, sie haben Stütz-, Isolier-, Abwehr- und Ernährungs- Funktion und sind etwa 10mal so häufig wie Nervenzellen.

Schwannsche-

Scheide => Myelinscheide, Gliascheide, Markscheide, Myelinhülle

Isolierschicht (Gliazelle) des Axons / Neuriten (im peripheren Nervenystem),

sie legt sich mehrfach spiralig um das Axon, wird von den Schwannschen- Zellen gebildet

Ranvierscher-

Schnürring => marklose, nur vom Axolemm umhüllte Lücke

Nervenfasern

Im Laufe der Entwicklung wickelt sich die Schwannsche-Zelle mehrfach spiralig um das Axon. Schließlich liegen die Zellmembranen der Schwann-Zelle mehr oder weniger dicht gepackt übereinander. Sie bilden die dem Axolemm aufliegende Markscheide (Myelinscheide). Die Markscheide besteht aus Zellmembranen. Und diese bauen sich aus Membranlipiden (Lipide isolieren elektrischen Strom) und Proteinen auf. Je nach der Anzahl der Umwicklungen entstehen...

Markarme>marklose => unter dem Lichtmikroskop marklos erscheinende Nervenfasern,

Schwannsche Zelle als einfache Hülle des Axons, typisch für das

Vegetative Nervensystem, mehrere Axone in die isolierende Gli- Zelle eingesenkt, da im Zentrum kein Axon liegt, erscheinen die Fasern marklos.

Markhaltige => mehrere Lagen um das Axon ,,gewickelt",

nur bei Wirbeltieren und manchen Krebsen. Kommen vorwiegend

im animalen Nervensystem (durch das Bewusstsein kontrollierter Teil) vor

Ruhepotential

Potentialdifferenz (Axon) -60 - -120mV (Mittelwert -80Mv) Innenseite gegenüber Außenseite negativ

Dieses Potential, also das einer nicht gereizten(/erregten) Zelle, ist das Ruhepotential.

Zustandekommen:

Intrazelluläre Flüssigkeit (im inneren d. Zelle) enthält als Anionen Proteinanionen (viele!) und Chloridanionen (wenige!) und als Kationen Kaliumionen und Natriumionen (wenige!) Extrazelluläre Flüssigkeit: vor allem Chloridanionen (keine Proteinanionen!!), sehr viele Natriumionen und wenige Kaliumionen.

Axonmembran vor allem für Kaliumionen durchlässig. Durch das Konzentrationsgefälle diffundieren K+Ionen durch die Axonmembran nach außen. Proteinanionen können nicht durch die Membran diffundieren und bleiben zurück.

Trennung der Ionen führt zur Trennung der elektrischen Ladungen und somit zu einer elektrischen Spannung (=Potentialdifferen=Ruhepotential).

Die Proteinanionen im Inneren üben einen ,,Zug" auf die (nach außen diffundierenden)

Kaliumionen aus. Folge: Gleichgewicht zwischen chemischen Konzentrationsgefälle und der elektrischen Anziehungskraft.

- Proteinanionen in der Zelle
- Chlorianionen frei beweglich; innen und außen
- Kaliumionenüberschuss innen
- Natriumionenüberschuss außen

Kalium-Natrium-Pumpe

Sehr geringer Strom von Natrium- und Chloridionen (durch die Zellmembran). Kaum Auswirkung auf das Ruhepotential. Eindringende Natriumionen werden unter Energie- Aufwand (ATP-Verbrauch!) wieder nach außen gepumpt. Gleiches Ausmaß Kalium-Ionen gelangt nach innen.

Aktionspotential (=Spike)

Potentialumkehr (außen negativ; innen positiv)

Durch z.B. Strom, Ruhepotential erniedrigt; Depolarisation der Nervenfaser.

Ursache: Erhöhung der Durchlässigkeit der Membran für Natriumionen.

Eine Depolarisation unter einem bestimmten Schwellenwert erhöht zunächst die Permeabilität der Zellmembran für Natriumkationen, so dass zu Beginn das AP mehr Natriumionen nach außen strömen als Kaliumkationen nach innen. Es entsteht im Inneren des Axons ein Überschuss an positiver Ladung.

Die Permeabilität für Natriumionen geht rasch wieder auf den Ausgangswert zurück, während die Permeabilität für Kaliumionen noch zunimmt; Ausstrom von Kaliumionen überwiegt, Membranpotential verändert sich wieder in Richtung Ruhepotential (-> Kalium-Natrium- Pumpe)

Refraktärzeit

Während der Kalium-Natrium-Pumpe die Ionenverteilung wiederherstellt (wie beim RP), solange wie die Permeabilität für Kaliumionen erhöht ist, ist kein weiteres AP Auslösbar, d.h. gereizte Stelle der Nervenfaser unerregbar, d.h. refraktär.

Alles-oder-Nichts-Gesetz

Höhe des AP (seine Amplitude) unabhängig von der Größe des auslösenden Reizes, es entsteht ab einem bestimmten Schwellenwert.

Erregungsleitung...in...

Marklose Nervenfaser: wird ein Axon erregt, so entsteht dort - sofern der Reiz überschwellig war - ein AP. Dies führt zur Depolarisation benachbarter und bisher noch unerregter Membranbezirke. Ist die Depolarisation stark genug (und der Schwellenwert erreicht), reagiert dieser Membranbezirk ebenfalls mit einem AP. So werden ständig neue AP längs des Axons gebildet, d.h. es kommt zu einem kontinuierlichen Fortschreiten von AP längs des Axons.

Markhaltige: Bei den markhaltigen Nervenfasern sind nur die an den Ranvierschen Schnürringen liegenden Bereiche der Axonmembran erregbar, somit ,,springt" die Erregung von Schnürring zu Schnürring. Es können also nur an den Schnürringen AP entstehen. Man spricht hier auch von einer saltatorischen Erregungsleitung.

Synapse

Aufbau: Das Ende eines Axons ist köpfchenartig erweitert. Diese Köpfchen legen sich an ein

Anderes Neuron oder an eine Muskelfaser an, bleiben aber durch einen schmalen Spalt, den sog. synaptischen Spalt, von einander getrennt. Diese Kontaktstelle wird Als Synapse bezeichnet. In den Köpfchen befinden sich kleine Bläschen (synaptische Bläschen, Vesikel), die eine chemische Verbindung, das Acetylcholin (Transmitter-Stoffe), enthalten. Die Axonmembran im Bereich der Synapse wird als präsynaptische Membran bezeichnet, die angrenzende Membran der folgenden Nerven- oder Muskelzelle als postsynaptische Membran.

Chemische Erregungsübertragung an Synapsen

Erreichen Aktionspotentiale den Endknopf eines Axons, öffnen sich die synaptischen Bläschen in den synaptischen Spalt. Das dabei freiwerdende Acetylcholin diffundiert über den synaptischen Spalt zur Muskelfasermembran. Spezifische Akzeptorstellen der Muskel- Fasermembran binden das Acetylcholin. Dabei wird durch Veränderung der Membraneigen- schaft (Permeabilitätsänderung) die Membran der Muskelfaser depolarisiert, d.h. ihr Ruhepotential erniedrigt.

Der Unterschied zwischen Ruhepotential und dem reduzierten Membranpotential wird als Endplattenpotential bezeichnet. Dieses löst ein normales Aktionspotential aus, das sich über die Muskelfaser ausbreitet und sie zur Kontraktion veranlasst. Zur Verhinderung einer Dauerreizung wird das von den Akzeptorstellen freigesetzte Acetylcholin durch das Enzym Cholinesterase in kurzer Zeit in Essigsäure und Cholin gespaltet.

Erregende Synapse: der Transmitter bewirkt, dass infolge der Permeabilitätssteigerung für Natrium das Ruhepotential abnimmt: Depolarisation)

Hemmende... : Permeabilitätssteigerung für Kalium- und Chloridionnen führt zu einer Erhöhung des Ruhepotentials: Hyperpolarisation)

Reflex

Ein Reflex ist die einfachste Form der Betätigung des zentralen Nervensystems. Auf einen sensiblen Reiz erfolgt eine motorische oder sekretorische Antwort. Beispiele: Lidschlagreflex, Kniesehnenreflex, Niesreflex usw.

Reflexe können als jederzeit auslösbares Verhalten aufgefasst werden. Sie laufen unter gleichen Bedingungen immer in der gleichen, starren Weise ab, sofern die Reizstärke einen bestimmten Schwellenwert überschreitet. Man unterscheidet zwischen direkten Reflexe(Kniesehenreflex)an denen nur zwei Neuronen beteiligt sind oder indirekten Reflexen, bei denen ein oder mehrere Schaltneuronen mitbeteiligt sind (z.B. Bachdeckenreflex)

Reflexbogen

Reiz-Sinneszellen (Rezeptoren): Transformation in eine Erregung > afferente Nervenfasern (Erregungsleitung zum ZNS) > ZNS > efferente Nervenfasern (Erregungsleitung vom Zentralnervensystem zum Erfolgsorgan) > Erfolgsorgan (z.B. Muskeln, Drüsen)

Dehnungsrezeptoren (Muskelspindeln)

Dehnungsrezeptoren (Propriorezeptoren) liegen in Muskeln, Sehnen und Gelenken. Sie geben dem Gehirn jeden Augenblick Auskunft über die Körperhaltung. Hierzu gehören vor allem der Muskelsinn, der von den Muskelspindeln gebildet wird. Die Meldungen dieses Sinnes dienen vor allem der Regelung der Muskelspannung.

Rezeptor => Empfangsorgan, best. Schwellenwert Effektor => Erfolgsorgan

Rezschwelle=> Eigenschaft d. Rezeptors, erst auf Reize eines best. Schwellenwerts m. Aus-

Lösung eines AP, d.h. mit Erregung , zu antworten.

Ende der Leseprobe aus 6 Seiten

Details

Titel
Die Nervenzelle
Autor
Jahr
2000
Seiten
6
Katalognummer
V98067
ISBN (eBook)
9783638965187
Dateigröße
403 KB
Sprache
Deutsch
Schlagworte
Nervenzelle
Arbeit zitieren
Sandra Werthmann (Autor:in), 2000, Die Nervenzelle, München, GRIN Verlag, https://www.grin.com/document/98067

Kommentare

  • Gast am 25.11.2008

    Typisch.

    Ich muss TheMatrixx in jeder Hinsicht zustimmen: Alles nur auswendig gelernt und hingeschrieben und nicht vernünftig erklärt. Liegt aber auch oft an den unterrichtenden Lehrern, die den Stoff so weitergeben. Du kannst mir nämlich sicherlich nicht erklären wie es zum Ruhepotential kommt. Nochmal an alle: BIO IST KEIN LERNFACH, SONDERN EIN FACH IN DEM MAN ALLES HINTERFRAGEN UND VERSTEHEN SOLLTE!!!!!

  • Gast am 4.11.2002

    Schlecht.

    Das ist doch alles nur auswendig- gelernt und aufgeschrieben. Jemand der den text z.B. nicht kennt, würde deine gedankengänge garnicht nachvollziehen können.
    Und richtig eklärt ist dass alles auch nicht.

  • Gast am 25.9.2002

    Vielen Dank.

    Hey, hab vielen Dank dafür, dass du diese Arbeit veröffentlicht hast. Nach langen verzweifelten Suchen bin ich endlich auf Hausarbeiten.de und somit auf dich und deine Arbeit gestossen. Gute Zusammenfassung von den Funktionen der einzelnen Bestandteile der Nerven zelle.
    Bis dann,
    Anna

  • Gast am 24.10.2001

    Widerspruch.

    Hallo Sandra!
    In deinem Text und speziell im Abschnitt über den Ablauf des Aktionspotential befindet sich ein Widerspruch!
    Natürlich diffundieren zuerst die Natrium Ionen nach innen und leicht zeitversetzt danach wie auch bei dir weiter beschrieben die Kalium Ionen nach außen!!

    Danke für deine ansonsten gut gelungene Zusammenfassung!!
    (Morgen Bio - Klausur)

    Martin 24.10.01

  • Gast am 19.10.2001

    thx.

    DANKESCHÖN!!!

    wird mir sehr bei LK Bio Klausur helfen!!!!!!!

Blick ins Buch
Titel: Die Nervenzelle



Ihre Arbeit hochladen

Ihre Hausarbeit / Abschlussarbeit:

- Publikation als eBook und Buch
- Hohes Honorar auf die Verkäufe
- Für Sie komplett kostenlos – mit ISBN
- Es dauert nur 5 Minuten
- Jede Arbeit findet Leser

Kostenlos Autor werden