Loading...

Socio-Economic Benefit of Biogas. A Study of Bhaktapur District

Essay 2008 4 Pages

Energy Sciences

Excerpt

SOCIO-ECONOMIC BENEFIT OF BIOGAS: A STUDY OF BHAKTAPUR DISTRICT

1 Bio Gas in Nepal

The pressure of population growth has been increasing in Nepal day by day. The demand of food and fuel supply is also increasing at an alarming rate, which will further continue to increase in the days to come. However, very limited sources of food and fuel are available in Nepal. Even these limited sources are not exploited effectively and efficiently. It is well realized that the conventional sources of fuel supply in Nepal are not sustainable. It is, therefore imperative to properly conserve and utilize the conventional sources of energy. Such sources of energy include fuel wood, agricultural residue and animal waste. Sustainable fuel wood supply from existing forest and other sources was estimated at 7.5 million tons for the year 1993. Agricultural residues and animal waste production for that year was estimated at 11.0 million tons each (WECS, 1994). These sources meet about 91 percent of total national energy consumption.

Nepal has an estimated area of 9.2 million hectares of potentially productive forest, shrub and grassland of which 3.5 million hectares are considered to be accessible for fuel wood collection. Sustainable yield from this accessible area was estimated to be about 7.5 million tons, while total fuel wood consumption was estimated to be about 11 million tons. Mainly felling of trees and burning more of agricultural and animal waste met the deficit. The possibility of fuel wood substitution by kerosene is limited to urban areas alone due to the limited transport network and low affordability of a majority of the population in rural areas.

The use of this traditional source of energy has negative consequences on human health. Burning of agricultural residue and animal waste may have serious consequences such as deprivation of organic matter to agricultural land, irreversible loss of soil fertility, loss of productivity as well as environmental and health hazard. Due to indoor air pollution, female members are highly vulnerable to respiratory diseases. They often come across dizziness and headache problems due to smoky environment in the kitchen. Therefore agricultural residue and animal waste may not be considered as long term viable solution to energy problem. A promotion of alternative energy option is essential for energy balance and to promote alternative technologies such as biogas, micro-hydro, solar, wind energy and renewable biomass production.

2 Bio Gas and Its Impact in Population

The alternative energy problems such as biogas, micro hydro, improved cooking stoves; solar water heaters, etc. have not been able to figure in the market economy. The most of the renewable technologies are subsidy dependent. It is most essential to provide a range of technological options for specific end-use of energy. The previous government policies about these technologies have done few changes but not enough because there was lack of co-ordination between various agencies without a single organization being responsible for the promotion and dissemination. Most of these technologies may be still found without operation in Nepal. Wind and solar energy exploitation evolves sophisticated technology, which is capital intensive. Installation of micro and mini hydro power plants too is not feasible in all the areas due to unavailability of perennial water sources. Hence, in order to solve the energy problem of Nepal's rural areas; a fast, easily implemented, cost-efficient, small scale, completely decentralized renewable alternate, which is technically feasible and economically viable has to be promoted in line with other technologies. Even though it is doubtless that biogas has lots of benefits, it is to be studied that, what the socio-economic impact in real is. The result of the study can be disseminated throughout the country particularly for end-users and policy makers.

Energy sources in Nepal can be broadly categorized into three groups such as traditional biomass energy, commercial non-biomass energy and alternative energy. Traditional energy includes fuel wood, agricultural residue and animal waste. Commercial energy comprises electricity, petroleum products and coal. Alternative energy sources include biogas, hydropower, solar and wind energy.

3 Biogas Technology

Biogas technology is one of the most trusted and popular alternative energy sources used for cooking and lighting particularly in rural Nepal. The book written by Mr. Govinda Devkota reveals this fact that the biogas technology is absolutely useful for the Nepalese context mainly from the technological point of views. Further clarification to the socio-economic impact from the biogas plants is needed. The other works (given below) on this sector has given some additional justification and information but still more information can for this sector will be beneficial.

Karki and Gurung (1996) found that all farmers, since the initiation of these programmes, started storing the slurry in compost pits. They report that the farmers use, on an average, 3.6 kg dry materials per day to absorb the moisture in the slurry as well as for the purpose of composting. Rice straw was used as composting material in the Terai whereas those in the hilly regions consisted of weeds, grasses and wasted fodder. Farmers were well aware of the superior fertilizing value of the slurry in comparison to Farm Yard Manure (FYM). Due to the limited availability of composting material and in consideration to the economic value of production, farmers tended to use higher rates of compost for vegetables (36 to 60 t/h) and only a moderate rate (6 to 15 t/h) for the cereals.

The authors recommend conducting research to study different composting materials for obtaining optimum nutritional enrichment of the slurry, and agronomic studies about its effects on various crops. They also suggest the need to improve the methods of extension and provision of training especially catering to the needs and requirements of the female members of the society. The study conducted by Van Vliet and Van Nes (1993) concluded that

The reduction in workload of women as a result of installing biogas plants amounts to a minimum of 2 hours and maximum of 7 hours per family per day” (p. 25). When pressed with the labour shortage for such works in family, it is the female children who have to forego their schooling (p. 25)

The use of organic wastes, of which the vegetable, kitchen waste and human and animal excreta comprise the main part, for the production of biogas is an environment-friendly technology both in the urban and as well as rural areas. When applied, it will benefit the marginal farmers in rural and suburban areas and at the same time it will initiate at source management of municipal solid waste in urban areas. “It will decrease firewood, fossil fuel as well as chemical fertilizer demand thus saving the foreign currency of the country and discouraging deforestation” (Kanel, 1999, p. 2).

REFERENCES

Biogas Sector Partnership. (BSP). (2007). Bio gas in Nepal. Retrieved from http://www.ashdenawards.org/winners/bsp.

Biogas Support Program. (BSP). (2002). An integrated environment impact assessment. Kathmandu: Author.

Cooper, D., & Schinlder, P. (2003). Business research methods. New Delhi: Tata McGraw Hill.

Kanel, N. R. (1999). An evaluation of BSP subsidy scheme for biogas plants. Kathmandu: BSP.

Karki, K.B. & B. Gurung (2000). Evaluation of biogas slurry extension pilot program. Katmandu: AEPC.

Ministry of Science and Technology. (MOST). (2001). Alternative energy promotion center (AEPC) biogas users survey 2000/2001. Kathmandu. Author.

Sharma, P. R. (2005). Research methodology with SPSS. Pokhara: Mankamana Books and Stationers.

Details

Pages
4
Year
2008
File size
434 KB
Language
English
Catalog Number
v285808
Grade
5
Tags
socio-economic benefit biogas study bhaktapur district

Author

Share

Previous

Title: Socio-Economic Benefit of Biogas. A Study of Bhaktapur District