Lade Inhalt...

Exotische Optionsrechte - Systematik und Einsatzmöglichkeiten -

Studienarbeit 2004 39 Seiten

BWL - Bank, Börse, Versicherung

Leseprobe

Inhaltsverzeichnis

Abbildungsverzeichnis

Tabellenverzeichnis

Abkürzungsverzeichnis

1 Einführung
1.1 Überblick
1.2 Ziele und Aufbau der Arbeit

2 Definition und Klassifizierung
2.1 Die Standard Option
2.2 Exotische Optionen

3 Exotische Optionsrechte
3.1 Pseudoexotische Optionen
3.1.1 Digitale Optionen
3.1.1.1 Funktionsweise
3.1.1.2 Einsatzmöglichkeiten
3.1.2 Capped-Warrants
3.1.2.1 Die Konstruktion
3.1.2.2 Die Kombination von Cap und Floor
3.1.2.3 Fazit
3.1.2.4 Power-Warrants
3.1.3 Range-Optionen
3.1.3.1 Der Single-Range-Warrant
3.1.3.2 Dual-Range-Warrants
3.1.3.3 Knock-Out-Range-Warrants
3.1.3.4 Simplex-Korridor-Optionsscheine
3.1.3.5 Fazit
3.2 Korrelationsabhängige Optionen
3.2.1 Basket-Optionen
3.2.2 Rainbow-Optionen
3.2.3 Quanto-Optionen
3.3 Pfadabhängige Optionen
3.3.1 Barrier-Optionen
3.3.1.1 Konstruktion
3.3.1.2 Einsatzmöglichkeiten
3.3.2 Lookback-Optionen
3.3.2.1 Funktionsweise
3.3.2.2 Beispiel
3.3.2.3 Markterwartung
3.3.3 Chooser-Option
3.3.3.1 Funktionsweise
3.3.3.2 Einsatzmöglichkeiten
3.4 Mischformen

4 Risiken von Finanzderivaten
4.1 Marktpreisrisiko
4.2 Risiko der Hebelwirkung
4.3 Liquiditätsrisiko
4.4 Risiko bei kreditfinanzierten Termingeschäften

5 Zusammenfassung

Anhang

Literaturverzeichnis

Versicherung

Abbildungsverzeichnis

Abbildung 1: Definition Plain-Vanilla-Option

Abbildung 2: Klassifizierung exotischer Optionen

Abbildung 3: Auszahlung bei Cap-Floor-Kombination

Abbildung 4: Am Markt erhältliche Range-Optionsscheine

Abbildung 5: Gehandelte Kontrakte an der EUREX

Abbildung 6: Gekappter DAX-Optionsschein (Call)

Abbildung 7: EUR/USD-Power Warrants (Call) 25/

Abbildung 8: Anzahl Knock-Out-Prudukte von Dez. 2002 bis Juli 2003.

Abbildung 9: So funktionieren Knock-Out-Papiere

Abbildung 10: Optionsbedingungen Lookback-Put 28/

Tabellenverzeichnis

Tabelle 1: Vergleich Standard-Option/Power-Warrant

Tabelle 2: Die größten Terminbörsen der Welt (nach gehandelten Kontrakten)

Abkürzungsverzeichnis

Abbildung in dieser Leseprobe nicht enthalten

1 Einführung

1.1 Überblick

Kein anderes Börsensegment hat in den vergangenen Jahren so stark an Gewicht gewonnen wie der Markt für Derivate. Wo früher fast ausschließlich Profis agierten, um ihre Aktienbestände abzusichern, tummeln sich heute beinahe alle Anlegerschichten. Derivate sind künstlich geschaffene Finanzinstrumente, welche von traditionellen Anlageformen wie Aktien, Anleihen, Indizes und Rohstoffen abgeleitet (lat. derivare = ableiten)[1] worden sind. Zu den populärsten Derivaten zählen Futures und Optionen.

Optionen sind als spekulative Kapitalanlage nicht nur die klaren Favoriten der risikofreudigen Investoren, sondern sie werden in der modernen Finanzwelt auch zu Absicherung, Handel und Arbitrage eingesetzt.[2] Zum Spekulieren werden sie gerade deshalb so gern genutzt, weil sie auf Marktschwankungen mit überproportionalen Wertänderungen reagieren. Allerdings sind nicht nur die Gewinnchancen ungewöhnlich hoch, sondern auch die Verlustmöglichkeiten.

Der Überlieferung nach hat bereits der Mathematiker, Astronom und Philosoph Tales mit Optionen gearbeitet. Wenn er im Winter eine sehr gute Olivenernte für den kommenden Frühling erwartete, kaufte er schon früh die Rechte, die Olivenpressen zu nutzen, billig ein. Während der sehr guten Olivenernte nahm er dann das Recht an, vermietete die Pressen zu einem sehr hohen Preis und machte somit Gewinn.[3]

Die USA eröffneten am 26. April 1973 die Chicago Board Options Exchange (CBOE). Hier wurden Optionen erstmals über einen standardisierten Markt gehandelt. In Deutschland startete am 26. Januar 1990 die Deutsche Terminbörse (DTB), welche 1998 mit der Schweizer Terminbörse (SOFFEX) zur EUREX (European Exchange) fusionierte. Nach der Korea Stock Exchange ist die EUREX heutzutage die zweitgrößte Terminbörse der Welt, und handelt über 800 Millionen Kontrakte pro Jahr.[4] Im Jahre 1999 startete die Börse Stuttgart mit der EUWAX (European Warrant Exchange) eine Plattform für den Handel mit verbrieften Derivaten, sog. Optionsscheinen (engl. Warrants). Heute ist die EUWAX mit mehr als 30.000 notierten Wertpapieren das größte börsliche Marktsegment für Hebel- und Anlageprodukte. An der EUWAX werden inzwischen mehr als 80 % des Marktes im börslichen Warrant-Handel in Deutschland abgewickelt.[5]

In Deutschland erfreuen sich sog. Exotische Optionen großer Beliebtheit. Das zeigt eine Umfrage der Société Générale unter Optionsscheininvestoren, bei der 85,5 % der Befragten angaben, solche Produkte zu nutzen.[6] Mit diesen, zum Teil over-the-counter[7] (OTC) und zum Teil an Wertpapierbörsen in Form von Optionsscheinen gehandelten Derivaten, kann der fortgeschrittene Investor seine spezifische Marktmeinung und sein individuell gewünschtes Chance-Risiko-Profil umsetzen. Man kann Marktphasen nutzen, in denen mit Standard-Optionen kaum Gewinne zu erzielen sind.[8]

„Investigate before you invest“ lautet eine amerikanische Börsenregel – man soll also alle wichtigen Informationen in Erfahrung bringen bevor man investiert. Da es für den Anleger oft sehr schwierig ist, die „Spreu vom Weizen zu trennen“ und nur die guten Körner herauszupicken, ist ein tiefgreifendes Verständnis für die Funktionsweise Exotischer Optionen unabdingbare Voraussetzung für eine auf Dauer erfolgreiche Spekulation.

1.2 Ziele und Aufbau der Arbeit

Im Rahmen dieser Arbeit soll untersucht werden wie Exotische Optionen funktionieren und wie sie eingesetzt werden. Hierzu werden Exotische Optionen im nächsten Kapitel definiert und klassifiziert, bevor anschließend ausgewählte Vertreter einzelner Klassen mit ihren Einsatzmöglichkeiten beschrieben werden. Ziel ist es exotische Optionen zu präsentieren, welche in bestimmten Börsensituationen sehr interessant sein können. Die Arbeit endet mit der Betrachtung von Risiken die bei Termingeschäften auftreten sowie mit einer Zusammenfassung der Ergebnisse.

2 Definition und Klassifizierung

Die meisten Arbeiten definieren Exotische Optionen über den Unterschied zu Standard- Optionen. Ihre Behandlung ist deshalb nicht ohne das Verständnis von sogenannten Plain-Vanilla-Optionen[9] möglich. Aus diesem Grund werden in diesem Abschnitt zuerst Standard Optionen definiert, bevor anschließend eine Definition exotischer Optionen sowie eine Klassifizierung in vier Gruppen vorgenommen wird.

2.1 Die Standard Option

Eine Option ist ein Vertrag zwischen zwei Parteien. Der Käufer der Option erwirbt gegen Zahlung des Optionspreises (der Prämie) das Recht, beispielsweise

Abbildung in dieser Leseprobe nicht enthalten

Abbildung 1: Definition Plain-Vanilla-Option[10]

Der Verkäufer (Stillhalter/Schreiber) übernimmt die Verpflichtung, den Basiswert zum festgelegten Ausübungspreis zu verkaufen (Call) bzw. zu kaufen (Put), sofern der Käufer sein Recht in Anspruch nimmt, d.h. die Option ausübt.

Gilt das Recht während der gesamten Laufzeit der Option, so spricht man von einer amerikanischen Option, wenn es nur zu einem vorab bestimmten Zeitpunkt gilt von einer europäischen Option.[11]

Der Einsatz von Standard Optionen ist für den Anleger genauso wie der Einsatz exotischer Optionen aus zwei grundsätzlich verschiedenen Motiven möglich: Absicherung oder Spekulation. Optionen können genutzt werden, um ein einmal erreichtes Kursniveau zum geplanten Kaufen oder Verkaufen von Aktien abzusichern und gleichzeitig weiterhin von günstigen Kursentwicklungen zu profitieren, oder um mit vergleichsweise geringem Kapitaleinsatz von Kursveränderungen des Basispreises überproportional zu profitieren. Diese Hebel (engl. Leverage) genannte Eigenschaft von Optionen führt zu höheren Renditechancen und -risiken und wird deshalb gerne von Anlegern mit einer bestimmten Erwartung über die zukünftige Wertentwicklung zur Steigerung der Rendite genutzt.[12]

2.2 Exotische Optionen

Exotische Optionen sind definiert als Optionen, deren Vertragseigenschaften sich von Standard Optionen unterscheiden[13], sowie als „…Optionen, die auf Grund ihrer Konstruktion einerseits niedrige Prämien (gegenüber traditionellen Optionen) erfordern, andererseits aber nur in bestimmten Bereichen ausübbar sind; …“[14]

Für die Klassifizierung exotischer Optionen gibt es verschiedene Vorschläge. Diese Arbeit verwendet eine Klassifizierung, die sich an Rodt Marc/Schäfer Klaus (1996); sowie an Steiner Manfred/Bruns Christoph (2002) anlehnt. Sie unterscheidet exotische Optionen nach der Anzahl der Basiswerte (einen oder mehrere) und danach, ob Pfadabhängigkeit gegeben ist. Unter Pfadabhängigkeit versteht man die Eigenschaft, dass eine Option von der Kursentwicklung des Basiswertes während der Vertragslaufzeit abhängig ist. Pfadunabhängige Optionen hingegen sind ausschließlich vom Kursniveau des Underlyings zum Fälligkeitszeitpunkt abhängig.[15]

Somit kommt es zu 2 × 2 = 4 verschiedenen Klassen exotischer Optionen, die in Abbildung 2 definiert und mit Ihren wichtigsten Vertretern aufgeführt sind.

Abbildung in dieser Leseprobe nicht enthalten

Abbildung 2: Klassifizierung exotischer Optionen[16]

3 Exotische Optionsrechte

3.1 Pseudoexotische Optionen

Von allen Klassen exotischer Optionen ähnelt die Auszahlungsfunktion pseudoexotischer Optionen am stärksten der von Standard Optionen. Wie bei diesen ist der Optionswert nur von einem Basiswert und auch nur von dessen aktuellem Kurs abhängig. Aus dieser Ähnlichkeit zu Standard Optionen resultiert auch der Name dieser Optionsklasse. Als wichtige Vertreter pseudoexotischer Optionen sollen im Folgenden die vier in Abbildung 2 aufgeführten Optionen erläutert werden.

3.1.1 Digitale Optionen

3.1.1.1 Funktionsweise

Digitale oder Binäre Optionen weisen nur zwei Möglichkeiten in ihrer Auszahlungsstruktur auf, nämlich den wertlosen Verfall oder die Zahlung einer festgelegten Summe. Notiert der Basiswert am Fälligkeitstag über (Call) bzw. unter (Put) dem Ausübungspreis, liegt also im Geld, so kommt es zur Auszahlung eines festen Betrages, andernfalls verfällt die Option wertlos. Dieser Optionstyp nennt sich auch „Hit-at-the-End-Option“.[17] Bei der sog. „One-touch-Option“ erfolgt die Zahlung sobald der Basiswert einmal während der Optionslaufzeit eine Marke bzw. einen Zielkurs erreicht oder übersteigt (Call) bzw. unterschreitet (Put), selbst dann, wenn dies nur sehr kurz der Fall war.[18]

Bei einer Call-Option in der Variante Hit-at-the-End auf den Deutschen Aktienindex (DAX), mit einem Zielkurs von 3.600 Punkten, würden also z.B. 10 € ausbezahlt werden wenn der DAX am Fälligkeitstag über oder gleich 3.600 Punkten notieren würde. Eine One-touch-Option hingegen würde diese 10 € bei einmaligem Erreichen der 3.600 Punkte, während der Laufzeit, sofort ausbezahlen.

Digitale Optionen wurden in den vergangenen Jahren hauptsächlich auf den Wechselkurs des US-Dollars (USD) angeboten. Seit kurzem gibt es aber auch digitale Optionen auf den DAX, wodurch das Interesse an diesem Finanzprodukt substanziell gestiegen ist.[19]

Von den Anlegern werden digitale Optionen häufig als eine Alternative zu einer Wette gesehen, da der Gewinn entweder aus 10 € oder gar nichts besteht.[20]

3.1.1.2 Einsatzmöglichkeiten

Digitale Optionen eignen sich insbesondere für Anleger mit einem klaren Kursziel. Wer auf Grund fundamentaler oder charttechnischer Überlegungen davon ausgeht, dass z.B. der DAX ein bestimmtes Kursniveau erreichen wird, kann so einen Gewinn automatisch realisieren. Die Entwicklung der vergangenen Monate zeigt, dass bestimmte Marken vom DAX zunächst nur kurz erreicht worden sind und er dann wieder zurückfiel, bevor er dann im zweiten Anlauf die Marke endgültig überschritt. Mit Digitalen Optionen wäre der Gewinn beim ersten erreichen der Marke sofort realisiert worden.[21]

3.1.2 Capped-Warrants

3.1.2.1 Die Konstruktion

Unter Capped-Warrants versteht man europäische Standard-Calls mit einer bei Emission festgelegten maximalen Gewinnhöhe. Überschreitet das zugrunde liegende Underlying die festgelegte Obergrenze, so nimmt die Option an der weiteren Wertsteigerung nicht teil. Der Begriff „Cap“ stammt aus dem Englischen, bedeutet „Mütze“ oder „Deckel“ und steht für diese Obergrenze.[22]

Hinter einem Cap verbergen sich zwei zusammengesetzte Standard-Optionen. Zum einen ein Long-Call (= gekaufter Call) sowie ein am gleichen Tag fälliger Short-Call (= verkaufter Call), dessen Ausübungspreis dem Kurs des Underlyings entspricht, an dem die größtmögliche Auszahlung fällig wird.[23] Das Pendant zum Cap ist der sog. Floor (engl. Boden). Diese Plain-Vanilla-Puts sind mit einer Untergrenze ausgestattet, bei deren Unterschreitung die Option an der weiteren Wertsteigerung nicht mehr partizipiert.[24]

Floors verbriefen einen Long-Put (= gekaufter Put) sowie einen Short-Put (= verkaufter Put), dessen Ausübungspreis unter dem des Long-Puts liegt.[25]

Ein Beispiel für die Bedingungen solch eines gekappten Optionsscheins befindet sich in Abbildung 6 im Anhang.

[...]


[1] Vgl. Ueli Fink/Insua Jose/Serano Carlos (2000), S. 3.

[2] Vgl. Rettberg Udo (2003 a).

[3] Vgl. Köhler Ralph (2002), S. 7.

[4] Vgl. Tabelle 2, sowie Abbildung 5 im Anhang.

[5] Vgl. Willius Andreas (2003).

[6] Vgl. Steinbrenner Hans Peter (2000), S. 261.

[7] Over-the-counter: („Über den Ladentisch“) Markt für den Handel mit Finanzinstrumenten, die an organisierten Börsen nicht zugelassen sind. Die Markttransaktionen erfolgen zwischen Market Makern oder zwischen Market Makern und ihrer Kundschaft.

[8] Vgl. Wunde Oliver (2000), S. B 4.

[9] Ein weiterer gebräuchlicher Ausdruck für eine Standard-Option ist der hauptsächlich im Angelsächsischen verwendete Begriff Plain-Vanilla-Option.

[10] Abb. 1: Vgl. Heidorn Thomas (2000), S. 141; sowie o.V. (2001 a), S. 41-43.

[11] Vgl. Neumann Marco/Zahner Dietmar (2003), S. 19; sowie Rettberg Udo (2003 c).

[12] Vgl. Rettberg Udo (2003 a); sowie Uszczapowski Igor (1999), S. 56.

[13] Vgl. Beike Rolf/Potthoff Andreas (1998), S. 95.

[14] Eilenberger Guido (1996), S. 160.

[15] Vgl. Steiner Manfred/Bruns Christoph (2002), S. 438.

[16] Abb. 2: Vgl. Rodt Marc/Schäfer Klaus (1996); sowie Steiner Manfred/Bruns Christoph (2002), S. 438.

[17] Vgl. Steinbrenner Hans Peter (2000), S. 270.

[18] Vgl. Müller-Möhl Ernst (2002), S. 294.

[19] Vgl. Gerhardt Wolfgang (2003 b).

[20] Vgl. Weissenfeld Horst/Weissenfeld Stefan (1997), S. 401.

[21] Vgl. Gerhardt Wolfgang (2003 b).

[22] Vgl. Beike Rolf/Potthoff Andreas (1998), S. 119 – 121.

[23] Vgl. Steinbrenner Hans Peter (2000), S. 276.

[24] Vgl. Steiner Manfred/Bruns Christoph (2002), S. 438.

[25] Vgl. Steinbrenner Hans Peter (2000), S. 276.

Details

Seiten
39
Jahr
2004
ISBN (eBook)
9783638302036
ISBN (Buch)
9783638649810
Dateigröße
789 KB
Sprache
Deutsch
Katalognummer
v28417
Institution / Hochschule
Duale Hochschule Baden-Württemberg, Villingen-Schwenningen, früher: Berufsakademie Villingen-Schwenningen – Banken und Bausparkassen
Note
1,3
Schlagworte
Exotische Optionsrechte Systematik Einsatzmöglichkeiten

Autor

Teilen

Zurück

Titel: Exotische Optionsrechte - Systematik und Einsatzmöglichkeiten -