Student Conference Medical Engineering Science 2014

Proceedings


Anthology, 2014

291 Pages

T. M. Buzug et al. (Author)


Excerpt




Exhibitors
Cooperation Partners


Proceedings
Student Conference on
Medical Engineering Science 2014
Lübeck, March 12­14, 2014

Conference Chair
Thorsten M. Buzug (Chair), Institute of Medical Engineering, Universität zu Lübeck
Stephan Klein (Co-Chair), Center for Biomedical Technology, University of Applied Sciences Lübeck
Local Coordination
Kanina Botterweck, Medisert, BioMedTec Science Campus
Martina Galler, Medisert, BioMedTec Science Campus
Christian Kaethner, Institute of Medical Engineering, Universität zu Lübeck
Christina Debbeler, Institute of Medical Engineering, Universität zu Lübeck
Gisela Thaler, Institute of Medical Engineering, Universität zu Lübeck
6FLHQWL¿F 3URJUDP &RPPLWWHH
Reginald Birngruber, Institute of Biomedical Optics, Universität zu Lübeck
Henrik Botterweck, Center for Biomedical Technology, University of Applied Sciences Lübeck
Ralf Brinkmann, Institute of Biomedical Optics, Universität zu Lübeck
Thorsten M. Buzug, Institute of Medical Engineering, Universität zu Lübeck
Hartmut Gehring, Clinic of Anesthesiology, University Medical Center Schleswig-Holstein, Campus Lübeck
Heinz Handels, Institute of Medical Informatics, Universität zu Lübeck
Horst Hellbrück, Center of Excellence CoSA, University of Applied Sciences Lübeck
Christian Hübner, Institute of Physics, Universität zu Lübeck
Gereon Hüttmann, Institute of Biomedical Optics, Universität zu Lübeck
Stephan Klein, Center for Biomedical Technology, University of Applied Sciences Lübeck
Martin Koch, Institute of Medical Engineering, Universität zu Lübeck
Martin Leucker, Institute for Software Engineering and Programming Languages, Universität zu Lübeck
Norbert Linz, Institute of Biomedical Optics, Universität zu Lübeck
Amir Mandany Mamlouk, Institute for Neuro- and Bioinformatics, Universität zu Lübeck
Thomas Martinetz, Institute for Neuro- and Bioinformatics, Universität zu Lübeck
Alfred Mertins, Institute for Signal Processing, Universität zu Lübeck
Stefan Müller, Center for Biomedical Technology, University of Applied Sciences Lübeck
Bodo Nestler, Center for Biomedical Technology, University of Applied Sciences Lübeck
Hauke Paulsen, Institute of Physics, Universität zu Lübeck
Ramtin Rahmanzadeh, Institute of Biomedical Optics, Universität zu Lübeck
Martin Ryschka, Laboratory for Medical Electronics, University of Applied Sciences Lübeck
Arndt-Peter Schulz, Laboratory for Biomechanics and Biomechatronics, Universität zu Lübeck
Achim Schweikard, Institute for Robotics and Cognitive Systems, Universität zu Lübeck
Proceedings
VI

$IWHU WKH JUHDW VXFFHVV RI WKH ¿UVW PHHWLQJV LQ DQG
WKH
rd
Student Conference on Medical Engineering Science
2014 shows a steady growth in quality and quantity of scien-
WL¿F FRQWULEXWLRQV 7KH H[SHULHQFHG RUJDQL]DWLRQ WHDP RI WKH
BioMedTec Science Campus Lübeck in cooperation with Nor-
genta, the North German Life Science Agency, has spared no
effort to provide a wonderful conference, where master stu-
dents of the campus present their recent research results to
D EURDG SXEOLF RI DFDGHPLFV DQG LQGXVWU\ 7KH FRQWULEXWLRQV
show how physics, engineering and computer sciences can
DGYDQFH PHGLFLQH KHDOWK DQG KHDOWK FDUH 0RUHRYHU WKLV FRQ-
ference offers a good opportunity for both students and com-
panies to get in touch at the industrial exhibition and to get to
NQRZ HDFK RWKHU IURP D GLIIHUHQW SRLQW RI YLHZ
Students from the Life Sciences programs at the BioMedTec
Science Campus present their results from projects carried out
at the laboratories and institutes of Lübeck's Universities, in
international research facilities and research-oriented industri-
DO FRPSDQLHV 7KH FRQIHUHQFH IRFXV KDV EHHQ SODFHG RQ WRSLFV
IURP PHGLFDO HQJLQHHULQJ 7KLV LQWHUGLVFLSOLQDU\ ¿HOG KDV EHHQ
established at the University of Applied Sciences Lübeck for
decades and Medical Engineering Science (Medizinische Inge-
nieurwissenschaft ­ MIW) is an important bachelor and master
Preface and Acknowledgements
SURJUDP DW WKH 8QLYHUVLWlW ]X /EHFN DV ZHOO %RWK XQLYHUVLWLHV
jointly offer the international master degree course Biomedical
(QJLQHHULQJ %0( 7KLV LV FRPSOHPHQWHG ZLWK IXUWKHU OLIH
science oriented programs of the University (Computer Sci-
ences, Medical Computer Sciences, Mathematics in Medicine
and Life Sciences, Molecular Life Science, Medicine) which
contribute to the success of the Medical Engineering Science
DQG %LRPHGLFDO (QJLQHHULQJ SURJUDPV
I want to thank all the people who worked with enthusiasm and
GHGLFDWLRQ WR PDNH WKH FRQIHUHQFH D VXFFHVVIXO HYHQW :LWKRXW
WKH ¿QDQFLDO VXSSRUW RI 1RUJHQWD DQG WKH 6WDWH RI 6FKOHVZLJ
+ROVWHLQ WKLV FRQIHUHQFH ZRXOG QRW KDYH EHHQ SRVVLEOH , KDYH
WR WKDQN WKH FRPSDQLHV ZKR VXSSRUW WKH PHHWLQJ 0RUHRYHU P\
thanks go to the technology transfer platform Medisert of the
%LR0HG7HF 6FLHQFH DPSXV 7KH SURIHVVLRQDO PDQDJHPHQW
of Kanina Botterweck and her Medisert team has contributed
VXEVWDQWLDOO\ WR WKH VXFFHVV RI WKLV FRQIHUHQFH 3HUVRQDOO\ DQG
on behalf of all colleagues of the BioMedTec Science Campus,
I especially want to thank Christian Kaethner and Christina
'HEEHOHU IURP WKH ,QVWLWXWH RI 0HGLFDO (QJLQHHULQJ 7KH\ KDYH
EHHQ WKH ¿UVW FRQWDFW SRLQW IRU DOO TXHVWLRQV RI VWXGHQWV DQG WKH
SURJUDP FRPPLWWHH PHPEHUV 7KHLU LQGHSWK RYHUYLHZ RI DOO
GHWDLOV RI WKLV HYHQW LV WKH NH\ WR WKH VXFFHVV RI WKH
rd
Student
RQIHUHQFH DW WKH %LR0HG7HF 6FLHQFH DPSXV
/EHFN 0DUFK
3URI 'U 7KRUVWHQ 0 %X]XJ
Vice President of the Universität zu Lübeck
Chair of the 3
rd
Student Conference
on Medical Engineering Science 2014
Student Conference on Medical Engineering Science
2014
VII


Biochemical Optics I
Improving the stability of an interferometry-based photoacoustic detection
A. Auner, J. Horstmann, C. Buj, R. Brinkmann
Implementation of a reconstruction algorithm for Photoacoustic Tomography 7
M. Münter, C. Buj, J. Horstmann, R. Brinkmann
/LJKW WUDQVPLVVLRQ PHDVXUHPHQWV DQG EHDP VL]H TXDQWL¿FDWLRQ LQ SRUFLQH H\HV 11
J. Rehra, A. Baade, K. Schlott, R. Brinkmann
Parameter optimization for power controlled retinal photocoagulation 15
W. Schwarzer, A. Baade, R. Brinkmann
Biochemical Optics II
6ROGHU PRGL¿FDWLRQ IRU ¿[DWLRQ RI ZRXQG GUHVVLQJV E\ ODVHU UDGLDWLRQ
N. Tödter, M. Wehner, R. Brinkmann
Imaging of heat and chemical burn affected skin ex vivo with coherent anti-stokes Raman (CARS) microscopy 27
J. Pruessner, A. J. Nichols, C. L. Evans, R. Birngruber
Variable, computer-controlled attenuator for use in a time-gated optical scanning system
K. Fuchs, H. Wabnitz
Development and validation of a measuring setup to determine the transmittance
of the illumination system of endoscopes
C. Hain, C. Holthaus
Biochemical Physics
Effect of substrate stiffness on photodynamic therapy sensitivity of various glioma cell lines in vitro
. 6FKHIÀHU - )LVKHU / ' /LOJH 5 %LUQJUXEHU
Photosensitizer delivery by liposomes 47
L. M. Nießen, A. Rodewald, B. Flucke, R. Rahmanzadeh
Investigation of human skin permeability to zinc oxide nanoparticles formulated as sunscreen 51
S. Bugler, Z. Song, R. Brinkmann, A. V. Zvyagin
Measurement of concentrations of photoreactive liquids with high scattering using a differential polarimeter 55
R. Schmidt, S. Müller
Evaluation of the usability of the metadynamics tool PLUMED2 59
R. Kuehn, H. Paulsen
Contents
Student Conference on Medical Engineering Science
2014
IX

Biomedical Engineering I
Characterisation of Pyroelectric Detectors for the Measurement of Medical and Safety-Relevant Gases 67
B. Redmer, R. Buchtal
Design and implantation of a test bed to separate different drugs in multi-infusion system using gas bubbles 71
S. Abdul-Karim, Y. S. Mutlu, J. Schroeter, B. Nestler
Flow Optimisation through Porous Ceramic Throttle 75
M. Ebner, Y. S. Mutlu, B. Nestler, E. Glatt
RPSUHVVLYH EHKDYLRU DQG LVRWURS\ RI VKRUW¿EHU¿OOHG HSR[\ F\OLQGHUV DV DOWHUQDWLYH WHVW PDWHULDO IRU FRUWLFDO ERQH 79
M. Schlitzke, R. Wendlandt, A. Sitzer, H. Handels
Construction of a Guide Wire Handle for the support of the operation of trochanteric hip fractures
S. E. Heinitz, C. Hoffmann, I. Stoltenberg, A. P. Schulz
Evaluation of needle deformation during brachytherapy 87
P. Koch, A. Schlaefer
Biomedical Engineering II
Practice of reprocessing medical single-use devices in Schleswig-Holstein 95
K. Köhler
Software testing as an important component in the development of medical devices 99
' =ZHUV ' 0HVHUHLW + +HHPH\HU
Design Change of a Flow Sensor for Medical Applications ­ Engineering Tests for System Integration
A. K. Laarmann, T. Wenk
Construction and Optimization of a Bidirectional Transducer to Treat Hearing Loss 107
M. Angerer, M. Koch, A. Hellmuth, S. Pieper, M. Bornitz
Design, Development and Comparison of two Different Measurement Devices for Time-Resolved Determination
of Phase Shifts of Bioimpedances 111
R. Kusche, S. Kaufmann, M. Ryschka
A System for Multi-Modal Assessment of Cardiovascular Parameters ­ Design and Measurements 115
A. Malhotra, G. Ardelt, S. Kaufmann, M. Ryschka
Signal Processing
'UDIW RI D PXOWLFKDQQHO HOHFWURP\RJUDSK\ DPSOL¿HU FLUFXLW ZLWK PRQRSRODU OHDG IRU KDQG SURVWKHVHV FRQWURO
N. Pfeiffer, H. Glindemann
Overcoming electrodes shift variances in multi-channel surface EMG recordings for prosthetic controlling 127
T. Friedrich, A. Mertins
Coil Geometry Optimization and Implementation of a Field Generator for Magnetic Particle Spectroscopy
T. Karisch, T. F. Sattel, T. M. Buzug
Signal Chain Optimization in Magnetic Particle Imaging
A. Behrends, M. Gräser, J. Stelzner, T. M. Buzug
Sparse Representation of Motion-Vector Fields using the Wavelet Transform
S. Bäcker, A. Mertins
Proceedings
X

Imaging and Image Computing I
Dictionary learning for sparse image representation with K-SVD algorithm 147
O. Kazankova, A. Mertins
VimbEye Exhibition Demo ­ an AVT machine vision camera application for eye-blink visualisation 151
3 .OHLQ + +DQGHOV 7 0DVFKPDQQ 1 'HK 2 5HXWHU
Localization of Heart Reference Point of a Lying Patient with Microsoft Kinect Sensor 155
Q. Ma, C. Bollmeyer, Y. Zhu, H. Hellbrück
' LPDJLQJ RI D IHPXU ZLWK D .LQHFW VHQVRU DQG WKH ' VFDQQLQJ VRIWZDUH .LQHFW )XVLRQ IRU WKH GHWHUPLQDWLRQ
of coordinates of points in the CT scan of the femur with the software Amira 159
S. Ketelhut, R. Wendtland, H. Handels
Evaluation of optical features for skin thickness compensated NIR triangulation
' +RIPDQQ 7 :LVVHO % :DJQHU 3 6WEHU ) (UQVW $ 6FKZHLNDUG
Imaging and Image Computing II
Analysis of Streamline Intensity Variances for Pulmonary Emboli Visualization in CTA Images 171
N. Leßmann, T. Klinder, R. Wiemker
Evaluation of Methods for Automatic Fish Segmentation 175
A. Hänler, E. Gutzeit, A. Mertins
An Algorithm for Automated Model Generation of in Vitro Cell Images 179
F. Kaiser, A. Madany Mamlouk
Subtraction Imaging on Double Inversion Recovery Images for Cortical Lesion Detection
in Patients with Multiple Sclerosis
:LQWHU 5 =LYDGLQRY 0 * 'Z\HU
Magnetic Resonance Imaging I
Development and Validation of a Tool for Pulse Wave Velocity Measurements in MRI Phase Contrast Data 191
A. Timmermeyer, M. A. Koch, A. Frydrychowicz
Automatic Image Quality Assessment of Head MRI Study Data 195
' +RLQNLVV 0 *QWKHU
KDVLQJ WKH =HEUD 7KH 4XHVW IRU WKH 2ULJLQ RI D 6WULSH $UWLIDFW LQ 'LIIXVLRQ:HLJKWHG 05,
199
M. Meyer, A. Biber, M. A. Koch
Motion Correction for MRI Exploiting Sparsity
H. Lüthje, A. Mertins
Visualizing Microscopic Hemorrhages with Susceptibility-Weighted Imaging (SWI) for Forensic Applications 207
A. Biber, M. Meyer, M. Koch
Student Conference on Medical Engineering Science
2014
XI

Magnetic Resonance Imaging II
Connection between structural and functional Connectivity: A Magnetic Resonance Study 215
- LHOXFK 7 % '\UE\ 1 %UJJHPDQQ + +DQGHOV + 5 6LHEQHU
Generation of an Accurate Tetrahedral Model of a Brain with Chronic Stroke Lesions
for TMS and tDCS Field Calculations 219
S. Minjoli, A. Thielscher
Spectral editing at 7 T: In vivo GABA separation in mouse brain
A. Niebergall, J. Baudewig, A. Moussavi, S. Boretius
Radiosurgery beyond cancer: Real-time tracking and treatment planning for non-invasive treatment
of cardiac arrhythmia 227
S. Ipsen, O. Blanck, G. Liney, F. Bode, A. Schweikard, P. Keall
LUMEN
Drug release from bone implants: a phenomenological modeling approach
- .ULHJHU 7 .OHSVFK 7 :HQ]HO 'DPLDQL 6W .OHLQ
Modeling diffusion of gentamicin eluted from a coated intramedullary nail
T. Klepsch, J. Krieger, H. Botterweck
Investigation of particle dynamics near the endothelial glycocalyx by multi focus FCS
/ .UHXW]EXUJ 9 'ROH]DO +EQHU
Holographic detection for non-contact Photoacoustic Tomography 247
C. Buj, J. Horstmann, M. Münter, R. Brinkmann
A physical model of perfused pulsating tissue compartments ­ Design concept 251
B. Weber, B. Nestler, V. Hennicke
Measuring the oxygen content of the cerebral efferent vessels 255
K. Rackebrandt, H. Gehring
Insight in Scanner Construction for a Dynamical Field Free Line for Magnetic Particle Imaging 259
M. Weber, K. Bente, T. M. Buzug
$Q DSSURDFK IRU SDWLHQW VSHFL¿F PRGHOLQJ RI WKH DRUWLF YDOYH OHDÀHWV
J. Hagenah, M. Scharfschwerdt, C. Metzner, A. Schlaefer, HH. Sievers, A. Schweikard
Experimental Evaluation Optimization of a UWB Localization System for Medical Applications 267
C. Bollmeyer, H. Hellbrück, H. Gehring
A System for In-Ear Pulse Wave Measurements 271
S. Kaufmann, A. Malhotra, G. Ardelt, N. Hunsche, K. Breßlein, R. Kusche, M. Ryschka
Proceedings
XII



1
Biomedical Optics I
Student Conference on Medical Engineering Science
2014
1






Implementation of a reconstruction algorithm for
Photoacoustic Tomography
M. M¨unter, C. Buj, J. Horstmann and R. Brinkmann
Abstract--Photoacoustic Imaging has become increasing pop-
ular in recent years. It is a non-ionizing imaging-technique with
high potential in medicine, especially suited to image the vascular
system. This paper is based on a full-field surface detection system
by interferometry. Therefore an absorber detection by mathe-
matical time reversal reconstruction is needed. In this paper,
the results of a two-dimensional delay-and-sum reconstruction
algorithm for different sizes of point absorbers are presented,
which have been done by Matlab. It has been shown that the two
dimensional reconstruction is reliable for spherical absorbers.
I. I
NTRODUCTION
Photoacoustic Imaging is a tomographic technique, which
combines the advantages of light and ultrasound. It is based
on the photoacoustic effect, shown schematically in Fig.
1. The absorption of electromagnetic radiation is followed
by temperature increase in the absorber, which results in a
rising pressure in the absorber. This causes in thermoelastic
expansion and pressure wave emission.
Fig. 1.
Schematic representation of the photoacoustic effect
State-of-the-art limitations are a long acquisition time and the
need for acoustic contact, such as the use of a piezoelectric
sensor system to detect the pressure waves [1]. Fig. 2 introduce
a novel non-contact full-field approach by the Medical Laser
Center Luebeck [2] for Photoacoustic Tomography. The detec-
tion system consists of a Mach-Zehnder interferometer and a
M. M¨unter, Medizinische Ingenieurwissenschaft, Universit¨at zu L ¨ubeck; the
work has been carried out at the Institute of Biomedical Optics, Universit¨at
zu L ¨ubeck, Luebeck, Germany (e-mail: muenter@miw.uni-luebeck.de).
C. Buj is with the Institute of Biomedical Optics, Universit¨at zu L ¨ubeck,
Luebeck, Germany (e-mail: buj@bmo.uni-luebeck.de).
J. Horstmann is with the Medical Laser Center Luebeck GmbH, Luebeck,
Germany (e-mail: horstmann@bmo.uni-luebeck.de).
R. Brinkmann is with the Institute of Biomedical Optics,Universit¨at zu
L ¨ubeck, Luebeck, Germany and the Medical Laser Center Luebeck GmbH,
Luebeck, Germany (e-mail: brinkmann@mll.uni-luebeck.de).
Fig. 2. Holographic Photoacoustic Imaging. Excitation pulses are applied to
the volume. The pressure induced surface displacements owing to thermoe-
lastic expansion of absorbers are recorded by an optical-holographic detection
unit.
high-speed CCD-camera (Basler Pilot piA1600-35g), which
captures the object and reference beam from the detection
laser with a frame rate of 20 Hz. The detection laser (CryLas
FTSS 355-50, pulse duration 1 ns) is a frequency doubled
Nd:YAG laser with a wavelength of 532 nm. For excitation a
flashlamp pumped Nd:YAG (Quantel YG571C, pulse energy
25 mJ, spot size 5 mm, repetition rate 10 Hz) laser is used with
a pulse duration of 6 ns and a wavelength of 1064 nm. The
detection of surface deformations is based on the principle of
Electronic Speckle Pattern Interferometry (ESPI), a method
for measuring very small changes in distances in nm range
[3], [4]. In order to calculate the position of the absorber, a
appropriate reconstruction method must be implemented.
II. M
ATERIAL AND
M
ETHODS
The mathematical software programming language Mat-
lab (Mathworks) is used, to develop an algorithm for two-
dimensional reconstruction and to visualize the first concepts.
Student Conference on Medical Engineering Science
2014
7

An adjusted delay-and-sum algorithm on the basis of the work
of Carp Venugopalan [5] and Hoelen du Mul [6] is
implemented to reconstruct the position of the acoustic sources
after data acquisition. The sequences of the algorithm are
schematically visualized in Fig. 3. Due to hardware limitations,
Fig. 3.
Flow chart of the Photoacoustic Imaging program, based on the
delay-and-sum principle.
an equidistant data acquisition was not possible. For this rea-
son, the missing data was interpolated with a shape-preserving
cubic interpolation algorithm for better results . To minimize
the influence of noise of the measured data, a 4x4 Gaussian
filter was applied. Furthermore, to remove background noise,
a simple threshold filter was used to extract artefacts. The
threshold filter extracted the values, who are less than 90 %
of the maximum intersection value.
A. Principle of triangulation
The approach is based on the principle of triangulation.
When the time of surface displacement and the velocity of
the spherical wave are known, the location of the absorber
can be calculated.
c =
m
t
m = c · t,
(1)
where
m is the distance from the absorber to the detection
layer,
t the time from absorption to detection and c the velocity
of the sound wave. The propagation velocity of the acoustic
wave in the silicone phantom is measured to be approximately
830
m
s
to
1050
m
s
. The varying of the velocity is caused by
the hardening of the silicone. For example, there are three
sensors detecting a spherical wave from an unknown source
at different times
t
1
, t
2
, t
3
. The radius (calculated distances
m
1
, m
2
, m
3
) of the circles make up the possible sources of
the spherical wave. If there are at least three sensors in two
dimensions, a definite source can be predicted at the point
of intersection. In addition, depending on the distance to the
center of the spherical wave, the calculated places of origins
were attenuated with a weighting factor
w, which is calculated
through a Gaussian function.
B. Phantom
The two-dimensional reconstruction is used for a phantom,
consisting of three components. A black-stained silicone ball
(absorption coefficient
= 29.6cm
-1
for
= 1064nm), who
serves as an absorber, is stored in a transparent silicone cuboid.
The area, which is sampled is coated with a white thin silicone
layer, in order to enable a better detection.
The absorber is usually located in
5mm ± 1mm depth be-
low the detection surface. The size of the entire cuboid is
10x45x10mm (height, width, depth), shown in Fig. 4.
Fig. 4.
Silicone phantom with a black-stained silicone ball in the center
The high-speed-camera records an image with a resolution
of
1200x1600 pixels, whereby a pixel correlates to 7.4m.
Therefore, an area of
8.88 mm x 11.74 mm is captured with
an imaging scale of 1:1. Fig. 5 shows 6 representative images
at different time steps of the surface deformation, which was
induced by the spherical pressure wave. The gray values can
Fig. 5.
Phase difference images at different time steps, relative to the point
of excitation a) 4,618
s b) 4,760 s c) 5,246 s d) 5,801 s e) 6,334 s
f) 7,568
s
Proceedings
8

be converted into nanometre scale from
-/2 to +/2. For
the two-dimensional reconstruction a line from the data over
time was extracted, as shown in Fig. 6.
Fig. 6.
Extracted sensor line with captured surface deformation
Depending on the position of a pixel and the corresponding
measured time, when the spherical wave is measured, a circle
is stored in an array. The occurred intersections provide the
position and form of the reconstructed absorber.
III. R
ESULTS AND
D
ISCUSSION
Two-dimensional images of two absorbers with different
diameter were reconstructed, to show the abilities of the delay-
and-sum-algorithm. The images were taken at 114 different
time steps for a 2 mm point absorber and for a 1 mm absorber
at 168 time steps. Furthermore, the images were interpolated
to 0.01
s steps from 0 s to 1000 s. A line segment above
the absorber were taken for reconstruction. Fig. 7 shows the
reconstructed image without a threshold filter and points out
the impact of ring artefacts due the art of reconstruction.
To reduce these artefacts, the results were threshold filtered,
shown in Fig. 8.
Fig. 7.
Reconstructed image from 2 mm absorber without threshold filter
In the reconstruction the first 2 mm absorber is located in 4.2
mm depth with a reconstructed diameter of 1.7 mm. As Fig.
8 visualizes, the largest probability of presence of depth is
5
mm.
Fig. 8.
Reconstructed 2 mm absorber with
c = 830
m
s
The 1 mm absorbers is located in 4 mm depth and has a
reconstructed diameter off 1.2 mm.
Fig. 9.
Reconstructed 1 mm absorber with
c = 1054
m
s
The results are concluded in Table I. The algorithm has also
been tested for the reconstruction of two absorbers, shown in
Fig. 10. When the displacement of the first sound wave of
the first absorbers propagates, the second wave arrives and
interferes with the first one.
TABLE I
M
EASURED AND RECONSTRUCTED DIAMETER AND DEPTH
Absorber
rec. Diameter
meas. depth
rec. depth
1 mm
1.2 mm
4 mm
4 mm
2 mm
1.7 mm
4.2 mm
4.3 mm
Student Conference on Medical Engineering Science
2014
9

Fig. 10.
Reconstructed image of two point absorbers
IV. C
ONCLUSION
In this paper, a two-dimensional reconstruction for the non-
contact photoacoustic imaging setup of the Medical Laser
Center Luebeck was developed. The 1 mm absorber, in com-
parison to the 2 mm absorber, has a more spherical shape and
also provides more accurate values for diameter and depth.
In addition, the maximum of all intersections for the 1 mm
absorber was at a depth of 4.5 mm, which corresponds to the
depth of the phantom. A first estimate about the depth can
be determined relatively precisely, but is caused by varieties
by the different values of propagation speed. Additionally, the
shape and diameter can only be assumed, which is unavoidable
due to the art of reconstruction.
A. Outlook
On the one hand, a nearly exact depth and diameter of the
absorber could be found, so that the type of reconstruction
was sufficient for the initial phase of the project. On the
other hand, more proved reconstruction methods [7] could
be investigated. Especially the statistical analysis about depth,
shape and diameter in comparison to established tools, like
optical coherence tomography should be treated and could help
to evaluate the quality of the reconstruction by triangulation
in detail. In the further course, the behaviour in the medium
to the absorber should be more investigated to improve the re-
construction results. In particular, different types of absorbers,
shapes, structures should be measured.
R
EFERENCES
[1] M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine" Review
of Scientific Instruments, vol. 77, no. 4, pp. 041101 - 041101-22, Apr.
2006 .
[2] J. Horstmann and R. Brinkmann, "Non-contact Photoacoustic Tomogra-
phy using holographic full field detection", Proc. of OSA-SPIE, vol. 8800,
pp. 880007-1, 2013.
[3] R. B¨uttner, "Untersuchung und Aufbau eines Laser-Speckle-Abstand- und
Geschwindigkeitssensors", dissertation, Ernst-Moritz-Universit¨at Greif-
swald, Institut f¨ur Physik , 2008 .
[4] H. Helmers and J. Burke, "Performance of spatial vs. temporal phase
shifting in ESPI", Proc. SPIE, vol. 3744, pp. 188-199, 1999.
[5] S. A. Carp and V. Venugopalan, "Optoacoustic imaging based on the inter-
ferometric measurement of surface displacement" Journal of Biomedical
Optics, vol. 12, no.6, pp. 064001, Nov./Dec. 2007 .
[6] C. A. Hoelen and F. F. M. de Mul, "Image reconstruction for photoa-
coustic scanning of tissue structures", Applied Optics, vol. 39, no. 31,
pp. 5872-5883, 2000 .
[7] M. Xu and L. V. Wang, "Universal back-projection algorithm for photoa-
coustic computed tomography", Phys. Rev. E, vol. 71, no. 1, pp. 016706-1
- 016706-7, 2005 .
Proceedings
10

Light transmission measurements and beam size
quantification in porcine eyes
J. Rehra, A. Baade, K. Schlott, and R. Brinkmann
Abstract--Laser photocoagulation is a leading treatment in a
range of retinal diseases. Besides the therapeutic effects, every
treatment produces an irreversible impairment of the neural
retina which should be as low as possible. The beam diameter
at the fundus as well as the light transmission through the eye
influence the appearance of the lesion as well as the accuracy
of the non-invasive temperature measurement. In this work, a
special holder for porcine eyes that minimizes the deformation
of the eye was designed and constructed. Using this holder,
measurements to determine the transmission and the beam
diameter at the fundus were performed for a wavelength of
532 nm. The transmission through porcine eyes was found to
be
86 %, measured behind a 4 mm-hole in the central fundus,
the beam diameter was found to be in good agreement with the
setting selected at the slit lamp.
I. I
NTRODUCTION
The treatment of retinal diseases by photocoagulation is
being performed since the 50s of the last century. The first
applications were done with focused sunlight by Meyer-
Schwickerath [1], although the development of the Laser in
the 1960s enabled the real breakthrough of the technique [2].
Until today, the laser-photocoagulation is a leading standard
in the treatment of a range of retinal diseases such as macular
edema and the diabetic retinopathy [3], [4].
The therapeutic effect of photocoagulation is based on
thermal damaging of the retina by absorption of light. The
retinal pigment epithelium (RPE) is rich in the pigment
melanin which has a high absorption coefficient in the range
of visible light. Absorbed light is transduced into heat by
internal conversion which leads to a temperature rise in the
surrounding tissue. Proteins in the adjacent tissue are denatured
if a temperature threshold is reached, producing a small area of
necrosis. Nowadays, green light emitting lasers are commonly
used for coagulation due to a reasonable compromise between
a low diffusion in the sclera and a high absorption in the RPE
[4].
Beside the positive effects, every application of intense light
produces a non-reversible impairment in the eye which should
be as low as possible without losing its clinical effect. It is
desired to produce a lesion just above the limit of damaging,
independent of the conditions of the treated fundus and other
J. Rehra, Medizinische Ingenieurwissenschaft, Universit¨at zu L¨ubeck,
the work has been carried out at Medical Laser Center L¨ubeck, (e-mail:
rehra@miw.uni-luebeck.de).
A. Baade is with Medical Laser Center L¨ubeck (telephone: +49 (0)451
500 6521, e-mail: baade@mll.uni-luebeck.de).
K. Schlott is with Medical Laser Center L¨ubeck (telephone: +49 (0)451
500 6417, e-mail: schlott@mll.uni-luebeck.de).
R. Brinkmann is with Medical Laser Center L¨ubeck and with Institute for
Biomedical Optics, Universit¨at zu L¨ubeck (telephone: +49 (0)451 500 6507,
e-mail: brinkmann@bmo.uni-luebeck.de).
influencing factors. However, a wide range of variations, e.g.
pigmentation of the fundus, is found even in the same eye.
This poses difficulties in the dosage of the laser power for the
ophthalmologist.
The decisive factor for the effect of the coagulation is the
temperature reached in the ocular fundus. Optoacoustics, beside
other approaches as reflectometry, magnetic resonance imaging
and optical coherence tomography, looks the most promising
concerning a practically relevant real-time measurement of the
temperature in the fundus of a patient during treatment [5].
Using the optoacoustic effect, the light energy of a short laser
pulse can be transformed into acoustic energy. The absorption
of light in a tissue causes a temperature rise, depending on the
properties of the tissue and the parameters of the laser. This
temperature rise leads to an expansion of the affected tissue. If
the deposed energy per pulse is high enough within a short time
(thermal confinement time), each laser pulse produces a bipolar
pressure wave propagating through the tissue as an ultrasonic
wave. Measuring these ultrasonic wave, the temperature in the
laser focus can be determined after a calibration with a known
temperature [6].
The project "Automatic Photocoagulation of the Retina"
(AutoPhoN) at the Medical Laser Center L¨ubeck GmbH
(MLL) uses this optoacoustic method to realize an online
dosimetrie during treatment of the ocular fundus. For that
application, a second probe laser is coupled into the beam path
of the treatment laser. It repeatedly measures the temperature
with nanosecond pulses. Surveilling the temperature profile
during treatment, the treatment laser can be stopped when
reaching a predefined temperature, corresponding to the desired
coagulation [5].
The exact calculation of the temperature depends on a set
of parameters as described in [6], [7]. The beam diameter and
profile have a great bearing on the calculation and have to
be known correctly, as well as the exact power applied to the
fundus which is influenced by absorption in the setup and the
ocular media. In this work, the beam diameter at the back
of the eye was investigated. The experiments are performed
on enucleated porcine eyes, fixed in a newly designed eye
holder. As a deformation of the eye can lead to distortion of
the laser beam and therefore to inaccuracies in the temperature
calculation, the eye is nearly completely enclosed by the holder
to prevent deformation.
II. M
ATERIAL AND
M
ETHODS
A. Eye holder and basic setup
The eye holder is designed using SolidWorks and manufac-
tured in the mechanical workshop of the Universit¨at zu L¨ubeck.
Student Conference on Medical Engineering Science
2014
11



Fig. 5.
Beam captured with WinCam at a preselected beam size of
1000 m
with lines of measurement. The diameter is calculated as average over the
eight measurements.
changed during the imaging process. It is tested by changing the
beam size from 1000 m to 500 m comparing the determined
scales. The average diameters are listed in Table I.
TABLE I
A
VERAGE DIAMETERS OF BEAMS
(
N
= 4)
WITH STANDARD DEVIATION
MEASURED FOR PRESELECTED BEAM SIZES
Preselected beam size
Measured beam size
m
m
50
55.3
± 5.5
100
114.5
± 12.2
200
203.0
± 11.8
300
297.7
± 12.2
500
436.8
± 73.6
1000
977.3
± 34.0
The measured beam sizes at four specimen correspond to the
beam sizes preselected at the slit lamp within the accuracy of
the measurement. The combination of the slit lamp, the contact
lens used and enucleated porcine eyes with a diameter of
approximately 24.5 mm therefore does not leads to significant
distortions of the laser beam and the beam size on the fundus
can be presumed as preselected at the slit lamp.
IV. C
ONCLUSIONS
The used setup with the new designed eye holder offers
good conditions for the testing of enucleated eyes within a
small variance of the diameter around 24.5 mm. For other sizes,
for example for rabbit eyes, a new eye holder with different
proportions would have to be manufactured. An evaluation of
coagulation treatment with the new eye holder and the full
AutoPhoN-setup compared to the setup as used before is still
pending.
The transmission through the enucleated porcine eye at
a wavelength of 532 nm was determined by (86
± 2) % in
accordance to literature for human eyes [9], [10].
It is shown that the beam size preselected at the slit lamp
is correctly applied to the fundus. Consequently, there is no
need to adjust the temperature measurement to accommodate a
deviation of the beam diameter from the selected one. An exact
determination of the beam profile could be done by further
experiments whereas the images of the beams suggest that
the assumption of a top hat profile is better than a gaussian
approach to simulate the temperature.
R
EFERENCES
[1] G. Meyer-Schwickerath, "Lichtkoagulation," Albrecht von Graefes Archiv
f¨ur Ophthalmologie Vereinigt mit Archiv f¨ur Augenheilkunde, vol. 156,
pp. 2­34, Jan. 1954.
[2] D. V. Palanker, M. S. Blumenkranz, and M. F. Marmor, "Fifty years of
ophthalmic laser therapy.," Archives of ophthalmology, vol. 129, pp. 1613­
1619, Dec. 2011.
[3] M. Nentwich and M. Ulbig, "Diabetische Retinopathie," Der Diabetologe,
vol. 6, pp. 491­502, Aug. 2010.
[4] "Laserkoagulation," in Retina: Diagnostik und Therapie der Erkrankun-
gen des hinteren Augenabschnitts (U. Kellner and J. Wachtlin, eds.),
pp. 77­82, Stuttgart: Thieme, 2008.
[5] K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider,
R. Birngruber, and R. Brinkmann, "Automatic temperature controlled reti-
nal photocoagulation.," Journal of biomedical optics, vol. 17, p. 061223,
June 2012.
[6] R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade,
S. Luft, Y. Miura, J. Roider, and R. Birngruber, "Real-time temperature
determination during retinal photocoagulation on patients.," Journal of
biomedical optics, vol. 17, p. 061219, June 2012.
[7] R. Birngruber, F. Hillenkamp, and V. P. Gabel, "Theoretical investigations
of laser thermal retinal injury.," Health physics, vol. 48, pp. 781­796,
June 1985.
[8] M. D. Abr`amoff, P. J. Magalh~aes, and S. J. Ram, "Image processing with
ImageJ," Biophotonics International, vol. 11, no. 7, pp. 36­42, 2004.
[9] E. A. Boettner and J. R. Wolter, "Transmission of the ocular media.,"
Investigative Ophthalmology Visual Science, vol. 1, no. 6, pp. 776­783,
1962.
[10] E. A. Boettner, "Spectral transmission of the eye," Contract AF41(609)-
2966. USAF School of Aerospace Medicine. Aerospace Medical Division
(AFSC). Brooks Air Force Base, 1967.
Proceedings
14

3DUDPHWHU RSWLPL]DWLRQ IRU SRZHU FRQWUROOHG
UHWLQDO SKRWRFRDJXODWLRQ
: 6FKZDU]HU $ %DDGH DQG 5 %ULQNPDQQ
$EVWUDFW ± 0DQ\ UHWLQDO GLVHDVHV DUH WUHDWHG ZLWK ODVHU
FRDJXODWLRQ +RZHYHU WKH WUHDWLQJ SK\VLFLDQ FDQ MXGJH WKH
VXFFHVV RI WKH WUHDWPHQW RQO\ DIWHU WKH H[SRVXUH ,Q RUGHU WR
JLYH D IHHGEDFN HYHQ GXULQJ WKH WUHDWPHQW RSWRDFRXVWLFV FDQ
EH XVHG WR PHDVXUH WKH WHPSHUDWXUH DW WKH IXQGXV LQ UHDOWLPH
GXULQJ WKH LUUDGLDWLRQ 7KH DFFXUDF\ RI WKH LQGXFHG
WHPSHUDWXUH ULVH GHSHQGV RQ WKH VWDUWLQJ ODVHU SRZHU SXOVH
HQHUJ\ DQG LUUDGLDWLRQ WLPH 7KLV ZRUN LQYHVWLJDWHV WKH
LQIOXHQFH DQG JLYHV D UHFRPPHQGDWLRQ IRU WKRVH SDUDPHWHUV WR
UHDFK WKH GHVLUHG WHPSHUDWXUH ULVH $V D PRGHO IRU KXPDQ
UHWLQDO SLJPHQW HSLWKHOLXP D V\QWKHWLF H\H ZLWK D IORSS\ GLVN LV
XVHG DV KRPRJHQRXV DEVRUEHU )RU WKDW SXUSRVH WHQ WHVW VHULHV
ZLWK LUUDGLDWLRQV HDFK XVLQJ GLIIHUHQW ODVHU SRZHUV SXOVH
HQHUJLHV DQG LUUDGLDWLRQ WLPHV DUH PHDVXUHG 5HFRPPHQGHG
SDUDPHWHUV DUH DQ LQLWLDO SRZHU RI P: SXOVH HQHUJ\
EHWZHHQ DQG - DQG DQ LUUDGLDWLRQ WLPH RI PV
, ,
1752'87,21
5HWLQDO ODVHU FRDJXODWLRQ LV FXUUHQWO\ WKH JROG VWDQGDUG IRU
PDQ\ GLVHDVHV VXFK DV GLDEHWLF UHWLQRSDWK\ RU DQ LPSHQGLQJ
UHWLQDO GHWDFKPHQW @ 'XH WR GLIIHUHQFHV RI UHWLQDO
SLJPHQWDWLRQ DV ZHOO DV DJH UHODWHG WXUELGLW\ RI WKH GLRSWULF
V\VWHP @ DEVRUSWLRQ LQ WKH H\H DQG WKHUHIRUH DOVR WKH
WUHDWPHQW VXFFHVV FDQ YDU\ $IWHU DQ LUUDGLDWLRQ WKH
RSKWKDOPRORJLVW FDQ DSSUDLVH WKH OHVLRQV DW WKH IXQGXV $W D
VWURQJ DEVRUSWLRQ RI WKH H\H WKH ODVHU SRZHU FDQ EH WRR KLJK
UHVXOWLQJ LQ DQ RYHUWUHDWPHQW DW ORZ DEVRUSWLRQ
FRQVHTXHQWO\ LQ DQ XQGHUWUHDWPHQW $Q RYHUWUHDWPHQW LV
SDLQIXO DQG FDQ FDXVH EOHHGLQJV LQVLGH WKH H\H @ $W DQ
XQGHUWUHDWPHQW WKH WKHUDS\ KDV QR EHQHILW DQG WKH WUHDWPHQW
PXVW EH UHSHDWHG
,W ZDV VKRZQ WKDW RSWRDFRXVWLFV FDQ EH XVHG WR PHDVXUH
WKH WHPSHUDWXUH ULVH LQ UHDOWLPH DQG WKDW WKLV WHPSHUDWXUH
PHDVXUHPHQW FDQ EH XVHG IRU DQ DXWRPDWLF GRVLPHWU\
FRQWURO WR FUHDWH KRPRJHQRXV OHVLRQV GXULQJ UHWLQDO
SKRWRFRDJXODWLRQ @
7KLV NLQG RI DXWRPDWLF GRVLPHWU\ ZDV VXFFHVVIXOO\
YHULILHG LQ DQLPDO WHVWLQJ DQG ODERUDWRU\ @ @
1HYHUWKHOHVV XQGHU DQG RYHUWUHDWPHQW PD\ RFFXU IRU YHU\
ORQJ DQG VKRUW LUUDGLDWLRQ WLPHV 7R DYRLG WKLV SUREOHP WKH
: 6FKZDU]HU 0HGL]LQLVFKH ,QJHQLHXUZLVVHQVFKDIW 8QLYHUVLWlW ]X
/EHFN WKH ZRUN KDV EHHQ FDUULHG RXW IRU 0HGL]LQLVFKHV /DVHU]HQWUXP
/EHFN /EHFN *HUPDQ\ WHOHSKRQH HPDLO
ZDGLPVFKZDU]HU#PLZXQLOXHEHFNGH
$ %DDGH LV ZLWK 0HGL]LQLVFKHV /DVHU]HQWUXP /EHFN /EHFN
*HUPDQ\ HPDLO EDDGH#POOXQLOXHEHFNGH
5 %ULQNPDQQ LV ZLWK ,QVWLWXW IU %LRPHGL]LQLVFKH 2SWLN 8QLYHUVLWlW ]X
/EHFN DQG 0HGL]LQLVFKHV /DVHU]HQWUXP /EHFN /EHFN *HUPDQ\ H
PDLO EULQNPDQQ#EPRXQLOXHEHFNGH
ZRUNJURXS GHYHORSV WKH SRZHU FRQWUROOHG SKRWRFRDJXODWLRQ
ZKHUH WKH LUUDGLDWLRQ WLPH LV IL[HG DQG WKH SRZHU LV
UHDGMXVWHG DXWRPDWLFDOO\ GXULQJ WKH WUHDWPHQW DFFRUGLQJ WR
WKH DEVRUSWLRQ LQ WKH H\H
7KH LQWHQWLRQ RI WKLV SDSHU LV WR LQYHVWLJDWH GLIIHUHQW
WUHDWPHQW SDUDPHWHUV LQ RUGHU WR LQFUHDVH WKH UHOLDELOLW\ RI
WKLV GRVLPHWU\ DSSURDFK
,, 0
$7(5,$/ $1'
0
(7+2'6
$ 3KRWRDFRXVWLF WHPSHUDWXUH PHDVXUHPHQW
,I DQ DEVRUEHU LV LUUDGLDWHG E\ SXOVHG ODVHU OLJKW LW KHDWV XS
LQVWDQWDQHRXV 'XH WR WKH LQFUHDVLQJ WHPSHUDWXUH SUHVVXUH
LQFUHDVHV WRR 7KLV UHVXOWV LQ D WKHUPRHODVWLF H[SDQVLRQ DQG
DQ HPLVVLRQ RI D ELSRODU SUHVVXUH ZDYH WKURXJK WKH H\H WKDW
FDQ EH PHDVXUHG DQG FRQYHUWHG LQWR WHPSHUDWXUH 7KH
RSWRDFRXVWLFDOO\ PHDVXUHG WHPSHUDWXUH 7
2$
FDQ EH H[SUHVVHG
DV @
ZKHUH S
PD[
LV WKH DPSOLWXGH RI WKH LQFRPLQJ SUHVVXUH ZDYH
(
S
LV WKH SXOVH HQHUJ\ DQG 7
PD[
DQG 7
DUH WLVVXHVSHFLILF
SDUDPHWHUV @ 7KH FRQVWDQW 6 LV LQGLYLGXDO IRU HDFK
WUHDWPHQW DQG FROOHFWV WLVVXHVSHFLILF DQG JHRPHWULF
YDULDEOHV @ 7KH DPSOLWXGH RI WKH SUHVVXUH ZDYH GHSHQGV
RQ WHPSHUDWXUH )LJ LOOXVWUDWHV WKH SULQFLSOH RI WKH
SKRWRDFRXVWLF WHPSHUDWXUH GHWHUPLQDWLRQ 7KH WHPSHUDWXUH
7 RI WKH DEVRUEHU LV ORZHU WKDQ 7 WKHUHIRUH OHVV
WKHUPRHODVWLF H[SDQVLRQ RFFXUV VR WKH PD[LPXP RI WKH
DPSOLWXGH RI WKH SUHVVXUH ZDYH LV KLJKHU DW D KLJKHU
WHPSHUDWXUH 7 %\ PHDVXULQJ WKH RSWRDFRXVWLFDOO\ LQGXFHG
SUHVVXUH ZDYHV WKH GLIIHUHQFH EHWZHHQ WKH WHPSHUDWXUHV LQ
WKH DEVRUEHU FDQ EH LQIHUUHG
)LJ 3ULQFLSOH RI SKRWRDFRXVWLF WHPSHUDWXUH GHWHUPLQDWLRQ @
Student Conference on Medical Engineering Science
2014
15

% 2SWLFDO VHWXS
)RU WKH SRZHU FRQWUROOHG SKRWRFRDJXODWLRQ WZR ODVHUV DUH
QHFHVVDU\ 7KH WUHDWPHQW ODVHU LV D FRQWLQXRXV ZDYH FZ
1' $* FRDJXODWLRQ ODVHU =HLVV 9LVXODV V WKDW
LUUDGLDWHV JUHHQ OLJKW ZLWK D ZDYHOHQJWK RI QP DQG WKH
PHDVXULQJ ODVHU LV D SXOVHG 4VZLWFKHG 1' /) ODVHU
U\VWD/DVHU 1 4* ZLWK D SXOVH GXUDWLRQ RI
QV D SXOVH UDWH RI N+] DQG D ZDYHOHQJWK RI QP 7R
SHUIRUP
WUHDWPHQW
DQG
WHPSHUDWXUH
PHDVXUHPHQW
VLPXOWDQHRXVO\ WKH EHDPV RI FZ DQG SXOVHG ODVHU DUH
FRXSOHG WRJHWKHU LQWR D PXOWLPRGH ILEHU 8VLQJ D VOLW ODPS
WKH LUUDGLDWLRQ EHDP GLDPHWHU FDQ EH VHW EHWZHHQ DQG
P DOVR WKH EHDP FDQ EH WDUJHWHG RQ WKH DEVRUEHU
7KH SKRWRDFRXVWLF UHVSRQVH LV PHDVXUHG ZLWK SLH]RHOHFWULF
HOHPHQWV LQ WKH FRQWDFW OHQV ZKLFK LV ORFDWHG RQ WKH H\H
7KH IXOO VHWXS LV VKRZQ LQ )LJ
)LJ 6HWXS IRU SRZHU FRQWUROOHG SKRWRFRDJXODWLRQ @
3ULQFLSOH RI SRZHU FRQWUROOHG SKRWRFRDJXODWLRQ
7KH SRZHUFRQWUROOHG GRVLPHWU\ LV UHDOL]HG ZLWK
LUUDGLDWLRQV FRQVLVWLQJ RI WZR FRQVHFXWLYH H[SRVXUHV )LUVW
WKH WDUJHW VWUXFWXUH LV LUUDGLDWHG E\ WKH FZ ODVHU ZLWK D ORZ
SRZHU 3
WR PHDVXUH WKH WUHDWPHQW VSHFLILF SDUDPHWHU 6 DQG
WKH WHPSHUDWXUH ULVH 7
ZLWKRXW DQ\ WKHUDSHXWLF HIIHFW
$IWHU WKDW WKH SRZHU LV LQFUHDVHG WR 3
DFFRUGLQJ WR
ZKHUH 7
DLP
LV WKH WHPSHUDWXUH ULVH WKDW JLYHV WKH GHVLUHG
OHVLRQ VWUHQJWK IRU WKH VSHFLILF LUUDGLDWLRQ WLPH @ $OO
WHPSHUDWXUHV ZKLFK DUH PHDVXUHG DUH WHPSHUDWXUH ULVHV
DERYH WKH EDVH WHPSHUDWXUH 7
UHI
7KH EDVH WHPSHUDWXUH 7
UHI
LV
' 6HULHV RI PHDVXUHPHQW
7R LQYHVWLJDWH WKH LQIOXHQFH RI WKH GLIIHUHQW SDUDPHWHUV DV
D PRGHO IRU D KXPDQ H\H D SLHFH RI D IORSS\ GLVN LQ D
V\QWKHWLF H\H LV XVHG DV D KRPRJHQRXV DEVRUEHU WR H[FOXGH
ELRORJLFDO YDULDWLRQV 7KH H\H LV PRXQWHG RQ DQ DWWDFKPHQW
LQ IURQW RI WKH VOLW ODPS 7
DLP
LV FKRVHQ WR EH EHFDXVH
EXEEOHV PD\ RFFXU RQ WKH GLVN DW KLJKHU WHPSHUDWXUH ULVHV
ZKLFK GLVWXUE WKH SKRWRDFRXVWLF VLJQDO
(DFK WHVW VHULHV FRQVLVWV RI LUUDGLDWLRQV RI WKH PRGHO
7KH EHDP VL]H LV P 3
LV P: WKH SXOVH HQHUJ\ LV
- DQG WKH LUUDGLDWLRQ WLPH LV PV 7KH ILUVW WZR WHVW
VHULHV DUH PHDVXUHG ZLWK WKHVH SDUDPHWHUV IRU UHIHUHQFH 7KH
SXUSRVH LV WR UHDFK WKH GHVLUHG WHPSHUDWXUH
7
DLP
UHSURGXFLEO\ DQG ZLWK ORZ DEHUUDWLRQV 7KH DFFXUDF\ RI
UHDFKLQJ 7
DLP
GHSHQGV VWURQJO\ RQ WKH DFFXUDF\ RI WKH
GHWHUPLQDWLRQ RI 7
7KHUHIRUH SDUDPHWHUV WKDW LQIOXHQFH
WKH DFFXUDF\ DUH YDULHG DQG WKH GLVWULEXWLRQ RI WKH PHDVXUHG
WHPSHUDWXUHV 7
DIWHU WKH VHFRQG H[SRVXUH ZLWK 3
LV
LQYHVWLJDWHG 7R LQFUHDVH WKH DPSOLWXGH RI WKH SKRWRDFRXVWLF
VLJQDO WKH SXOVH HQHUJ\ LV LQFUHDVHG WR - DQG -
)XUWKHU WHVW VHULHV LQYHVWLJDWH WKH LQIOXHQFH RI FZ SRZHU 3
WKHUHIRUH 3
LV LQFUHDVHG WR P: P: DQG
P: +LJKHU SRZHU ZRXOG LQGXFH WHPSHUDWXUH ULVHV DW
ZKLFK WLVVXH GDPDJH FRXOG RFFXU GXULQJ WKH ILUVW H[SRVXUH
,Q RWKHU WHVW VHULHV WKH LUUDGLDWLRQ WLPH RI WKH IXQGXV ZLWK
WKH WUHDWPHQW ODVHU ZDV FKDQJHG WR PV PV DQG
PV
,,, 5
(68/76 $1'
'
,6866,21
$ 0HDVXUHPHQW ZLWK LQLWLDO SDUDPHWHUV
7KHVH PHDVXUHPHQWV ZLWK RYHUDOO LUUDGLDWLRQV ZHUH
SURGXFHG ZLWK WKH VWDQGDUG SDUDPHWHUV ZLWK DQ LUUDGLDWLRQ
WLPH RI PV 3
RI P: DQG SXOVH HQHUJ\ RI - 7KH
PHDQ YDOXH RI 7
LV DQG WKH PHDQ YDOXH RI 7
LV
7KH VWDQGDUG GHYLDWLRQ RI 7
LV 7KH
WHPSHUDWXUH GLVWULEXWLRQ LV VKRZQ LQ )LJ
)LJ 'LVWULEXWLRQ RI 7
DIWHU LUUDGLDWLRQV ZLWK 3
P: SXOVH
HQHUJ\ RI - DQG LUUDGLDWLRQ WLPH RI PV IRU UHIHUHQFH
7KH REWDLQHG WHPSHUDWXUHV DUH WRR ORZ DQG WKH GHYLDWLRQ
RI 7
LV UHODWLYHO\ ODUJH VR IXUWKHU WHVWV ZHUH SHUIRUPHG
ZLWK GLIIHUHQW SDUDPHWHUV WR LPSURYH WKH GHVLUHG
WHPSHUDWXUH
% 'LIIHUHQW SRZHU 3
,QFUHDVH RI 3
KDV WKH HIIHFW WKDW 7
RI D ILUVW H[SRVXUH RI
DQ LUUDGLDWLRQ LQFUHDVHV DQG WKH GHWHUPLQDWLRQ RI WKLV 7
LV
PRUH DFFXUDWH DQG OHVV VXVFHSWLEOH WR QRLVH 7KH PHDQ
YDOXHV RI 7
DQG 7
DQG WKH VWDQGDUG GHYLDWLRQ RI 7
DUH
Proceedings
16

VKRZQ LQ 7DEOH , )RU FRPSDULVRQ YDOXHV IURP WKH
PHDVXUHPHQW ZLWK VWDQGDUG SDUDPHWHUV DUH DOVR OLVWHG LQ WKH
WDEOH
7$%/( ,
0($1 7(03(5$785(6 2) ',))(5(17 32:(5 3
3
P:
7
7
6WDQG GHY
)LJ 'LVWULEXWLRQ RI 7
ZLWK GLIIHUHQW 3
SXOVH HQHUJ\ RI - DQG
LUUDGLDWLRQ WLPH RI PV D 3
P: E 3
P: F
3
P:
)LJ VKRZV WKDW 7
LV WRR KLJK DW WKH LUUDGLDWLRQV ZLWK
3
P: 7KH UHDVRQ FRXOG EH D FKDQJH RI WKH DEVRUEHU
DIWHU WKH ILUVW LUUDGLDWLRQ 2Q ERWK RWKHU WHVW VHULHV 7
DLP
LV
UHDFKHG DFFXUDWHO\ DQG LW LV VKRZQ WKDW WKH KLJKHU 3
WKH
VPDOOHU WKH GHYLDWLRQ
RPSDULVRQ RI SXOVH HQHUJLHV
7KH FRQVHTXHQFH RI KLJKHU SXOVH HQHUJLHV LV D EHWWHU DQG
OHVV QRLV\ SKRWRDFRXVWLF VLJQDO EXW ZLWK D KLJKHU HQHUJ\
7
LQFUHDVHV IURP WKH SXOVH DQG FDQ GLVWRUW WKH
UHDGMXVWPHQW 7DEOH ,, VKRZV PHDQ WHPSHUDWXUH ULVHV RI WHVW
VHULHV ZLWK - - DQG -
7$%/( ,,
0($1 7(03(5$785(6 2) ',))(5(17 38/6( (1(5*,(6
3XOVH HQHUJ\ -
7
7
6WDQG GHY
7KH PHDVXUHPHQW ZLWK - KDV D KLJKHU VWDQGDUG
GHYLDWLRQ DQG GRHV QRW FRUUHVSRQG WR H[SHFWDWLRQV :LWK D
SXOVH HQHUJ\ RI - WKH VLJQDO WR GHWHUPLQH 7
LV YHU\
SURQRXQFHG KHQFH WKH VWDQGDUG GHYLDWLRQ LV PLQLPDO %XW WKH
PHDQ YDOXH RI 7
LV RQH GHJUHH KLJKHU DOWKRXJK 3
LV WKH
VDPH 'XH WR WKLV LQFUHDVH 3
LV UHDGMXVWHG DFFRUGLQJ WR
DQG JHWV D ORZHU 7
)LJ VKRZV 7
ZLWK SXOVH HQHUJ\ RI
- )XUWKHU PHDVXUHPHQWV VKRXOG KDYH SXOVH HQHUJLHV
EHWZHHQ - DQG - WR H[FOXGH WHPSHUDWXUH ULVLQJV GXH WR
PHDVXUHPHQW SXOVHV
)LJ 7
DIWHU WKH LUUDGLDWLRQ ZLWK SXOVH HQHUJ\ RI - 3
P:
DQG LUUDGLDWLRQ WLPH RI PV
' ,UUDGLDWLRQ WLPHV
7KH PHDQ WHPSHUDWXUH ULVHV RI LUUDGLDWLRQV ZLWK PV
PV PV DQG PV DUH OLVWHG LQ 7DEOH ,,, 7KHVH WHVW
VHULHV DUH WDNHQ WR HYDOXDWH WKH LQIOXHQFH RI LUUDGLDWLRQ WLPH
RQ WKH PHDVXUHPHQW 1HYHUWKHOHVV VKRUW LUUDGLDWLRQ WLPHV
DUH SUHIHUUHG WR H[FOXGH LQFRUUHFW LUUDGLDWLRQV EHFDXVH RI
PRYHPHQW RI WKH H\H ZKLFK KDV DQ LQIOXHQFH DW ORQJ
LUUDGLDWLRQ WLPHV )XUWKHUPRUH LW KDV EHHQ VKRZQ WKDW
SDWLHQWV H[SHULHQFH OHVV SDLQ DW VKRUWHU LUUDGLDWLRQ WLPHV @
Student Conference on Medical Engineering Science
2014
17

7$%/( ,,,
0($1 7(03(5$785(6 2) ',))(5(17 ,55$',$7,21 7,0(6
,UU WLPH PV
7
7
6WDQG GHY
7
DLP
LV UHDFKHG UHSURGXFLEO\ ZLWK DQ DFFHSWDEOH VWDQGDUG
GHYLDWLRQ DW ORQJ LUUDGLDWLRQ WLPHV ,Q )LJ WKH WHPSHUDWXUH
GLVWULEXWLRQ ZLWK LUUDGLDWLRQV RI PV LV VKRZQ 7KH
PDMRULW\ RI WKH YDOXHV DUH FORVH WR 'XH WR ORQJHU
LUUDGLDWLRQ 7
FDQ EH GHWHUPLQHG PRUH DFFXUDWHO\ VR 3
DOVR FDQ EH UHDGMXVWHG ZLWK KLJKHU SUHFLVLRQ
)LJ 'LVWULEXWLRQ RI 7
IRU WKH PHDVXUHPHQW ZLWK 3
P: SXOVH
HQHUJ\ RI - DQG LUUDGLDWLRQ WLPH RI PV
,9
21/86,216
,W KDV EHHQ VKRZQ WKDW WKH GLIIHUHQW SDUDPHWHUV KDYH DQ
LQIOXHQFH RQ GHWHUPLQDWLRQ RI 7
DQG ZLWK WKH ULJKW FKRLFH
WKH WUHDWPHQW TXDOLW\ FDQ EH GLVWLQFWO\ LPSURYHG 5HVXOWV
ZLWK KLJKHU 3
IRU GHWHUPLQDWLRQ RI 7
DUH EHWWHU EXW LW LV
LPSRUWDQW WR HQVXUH WKDW
7
GRHV QRW H[FHHG
RWKHUZLVH FRDJXODWLRQ HIIHFWV DUH SRVVLEOH HYHQ GXULQJ WKH
ILUVW H[SRVXUH
3XOVH HQHUJ\ LV LPSRUWDQW IRU WKH GHWHUPLQDWLRQ RI 7
WRR /RZ SXOVH HQHUJ\ FDXVHV D QRLV\ SKRWRDFRXVWLF VLJQDO
,I WKH SXOVH HQHUJ\ LV WRR KLJK 7
LQFUHDVHV DQG 3
LV
UHDGMXVWHG WRR ORZ E\ WKH V\VWHP DFFRUGLQJ WR VR 7
LV
LQVXIILFLHQW IRU WKH WUHDWPHQW 7KH SXOVH HQHUJ\ VKRXOG EH
EHWZHHQ - DQG - WKH RSWLPDO YDOXH LV VXEMHFW WR
IXUWKHU WHVWV ,W KDV DOVR EHHQ VKRZQ WKDW ORQJHU LUUDGLDWLRQ
WLPHV \LHOG EHWWHU UHVXOWV EXW DV PHQWLRQHG DERYH VKRUW
LUUDGLDWLRQ WLPHV DUH EHWWHU IRU WKH SDWLHQW DQG IRU
PHDVXUHPHQWV DW H\HV LQYLYR VR WKH LPSURYHPHQW VKRXOG
EH GRQH ZLWK WKH RWKHU SDUDPHWHUV
3UHIHUUHG SDUDPHWHUV DUH 3
P: SXOVH HQHUJ\ RI
- DQG LUUDGLDWLRQ WLPH RI PV
9 2
87/22.
7R YDOLGDWH WKH UHVXOWV IXUWKHU WHVW VHULHV DUH QHFHVVDU\
SDUWLFXODUO\ WR ILQG WKH EHVW YDOXH IRU SXOVH HQHUJ\ EHWZHHQ
- DQG - 7KHQ WHVW VHULHV ZLWK UHWLQDO SLJPHQW
HSLWKHOLXP 53( IURP D SLJ DQG 7
DLP
RI DUH
LPSRUWDQW EHFDXVH WKH KHDW FRQGXFWLRQ LQ ELRORJLFDO WLVVXH LV
GLIIHUHQW IURP WKH GLVN )LUVW PHDVXUHPHQWV ZLWK SRUFLQH
53( VKRZ WKDW WKH PLQLPDO YDOXH IRU 3
LV KLJKHU WKDQ IRU
WKH GLVN WR UHDFK 7
DLP
DFFXUDWHO\ $IWHU D YHULILFDWLRQ RI WKH
SDUDPHWHUV IRU ELRORJLFDO WLVVXH WHVW VHULHV ZLWK FRPELQHG
GLIIHUHQW SDUDPHWHUV PXVW EH FRQGXFWHG WR RSWLPL]H WKH
SDUDPHWHUV
$IWHU SDUDPHWHU RSWLPL]DWLRQ DQG YHULILFDWLRQ RI
HIILFLHQF\ RI WKH VHWXS DQLPDO WHVWLQJ LV QHFHVVDU\ WR YHULI\
WKH WUHDWPHQW LQYLYR ZLWK OLYLQJ DQG PRYLQJ H\HV
5
()(5(1(6
@
(DUO\ 7UHDWPHQW 'LDEHWLF 5HWLQRSDWK\ 5HVHDUFK *URXS (DUO\
SKRWRFRDJXODWLRQ IRU GLDEHWLF UHWLQRSDWK\ (7'56 UHSRUW 1R LQ
2SKWDOPRORJ\ SS
@
( 5 %RHWWQHU DQG - 5 :ROWHU 7UDQVPLVVLRQ RI WKH RFXODU PHGLD
LQ ,QYHVWLJDWLYH 2SKWDOPRORJ\ 9LVXDO 6FLHQFH SS
@
5 %LUQJUXEHU *UXQGODJHQ RSKWDOPRORJLVFKHU /DVHUDQZHQGXQJHQ
$XJHQlU]WOLFKH 7KHUDSLH *HRUJ 7KLHPH 9HUODJ
@
. 6FKORWW HW DO $XWRPDWLF WHPSHUDWXUH FRQWUROOHG UHWLQDO
SKRWRFRDJXODWLRQ -RXUQDO RI %LRPHGLFDO 2SWLFVYRO S
-XQH
@
5 %ULQNPDQQ HW DO 5HDOWLPH WHPSHUDWXUH GHWHUPLQDWLRQ GXULQJ
UHWLQDO SKRWRFRDJXODWLRQ RQ SDWLHQWV -RXUQDO RI %LRPHGLFDO 2SWLFV
YRO S -XQH
@
@
. 6FKORWW 2SWRDXNXVWLVFKH 7HPSHUDWXUEHVWLPPXQJ ]XU VFKRQHQGHQ
3KRWRNRDJXODWLRQ GHU 1HW]KDXW 8QLYHUVLWlW +DPEXUJ GLSORPD
WKHVLV
$ %DDGH XQSXEOLVKHG
@
6 %XJOHU 3KRWRDNXVWLVFKH 7HPSHUDWXUPHVVXQJHQ ]XU
DXWRPDWLVFKHQ /HLVWXQJVUHJHOXQJ EHL GHU 3KRWRNRDJXODWLRQ GHU
1HW]KDXW 8QLYHUVLWlW ]X /EHFN EDFKHORU WKHVLV
@
6 $O+XVVDLQ\ 3 0 'RGVRQ DQG - 0 *LEVRQ 3DLQ UHVSRQVH DQG
IROORZ XS RI SDWLHQWV XQGHUJRLQJ SDQUHWLQDO ODVHU SKRWRFRDJXODWLRQ
ZLWK UHGXFHG LUUDGLDWLRQ WLPHV (\H SS
Proceedings
18



2
Biomedical Optics II
Student Conference on Medical Engineering Science
2014
21


6ROGHU PRGLILFDWLRQ IRU IL[DWLRQ RI ZRXQG GUHVVLQJV
E\ ODVHU UDGLDWLRQ
1 7|GWHU 0 :HKQHU 5 %ULQNPDQQ
:RXQG GUHVVLQJV OLNH FROODJHQ VFDIIROGV DUH RIWHQ XVHG ZKHQ
H[WHQVLYH ZRXQGV KDYH WR EH NHSW IUHH RI EDFWHULD ,Q WKLV ZD\ WKH
PRLVW PLOLHX ZLOO EH VXVWDLQHG ZKLFK OHDGV WR D EHWWHU ZRXQG
KHDOLQJ $FFRUGLQJ WR WKH VWDWH RI DUW VFDIIROGV DUH IL[HG WR VNLQ E\
VWLWFKLQJ VWDSOLQJ RU JOXLQJ 7R DYRLG DGGLWLRQDO LQMXULHV GXULQJ
IL[DWLRQ ODVHU UDGLDWLRQ DQG D VROGHU DUH XVHG 7KH VWDQGDUG
VROGHU PDGH RI ERYLQH VHUXP DOEXPLQ DQG SKRVSKDWH EXIIHUHG
VDOLQH LV PRGLILHG ZLWK )RUPDOGHK\GH *OXWDUDOGHK\GH DQG
3RO\HWK\OHQH JO\FRO GLJO\FLG\O HWKHU WR ILQG RXW LI D PRGLILFDWLRQ
JLYHV D VWURQJHU FRQQHFWLRQ EHWZHHQ VFDIIROG DQG VNLQ )RU
FRPSDULQJ WKH VWUHQJWK RI WKH FRQQHFWLRQ JLYHQ E\ IRXU GLIIHUHQW
VROGHUV SHHORII WHVWV DUH FDUULHG RXW 7KH UHVXOW VKRZV WKDW WKH
VROGHU FRQVLVWLQJ RI SKRVSKDWH EXIIHUHG VDOLQH DQG ERYLQH VHUXP
DOEXPLQ UHDFKHV WKH EHVW VWUHQJWK ,W LV QRW SRVVLEOH WR JHW KLJKHU
ERQG VWUHQJWK E\ DGGLQJ DGGLWLYHV WR WKH VROGHU
, ,
1752'87,21
7RGD\ GUHVVLQJV RI H[WHQVLYH ZRXQGV OLNH GHHS EXUQV DUH
IL[HG E\ VWLWFKLQJ RU VWDSOLQJ %XW WKHVH PHWKRGV KDYH
GLVDGYDQWDJHV EHFDXVH WKH\ FDXVH DGGLWLRQDO GDPDJH DQG
VXUJHU\ WLPH (VSHFLDOO\ WKH LQMXULHV FDXVHG E\ WKH IDVWHQLQJ RI
WKH ZRXQG GUHVVLQJ SRVH DGGLWLRQDO VWUHVV IRU WKH SDWLHQW 7KLV
FDQ OHDG WR LPSDLUHG ZRXQG KHDOLQJ 1HYHUWKHOHVV ZRXQGV
KDYH WR EH NHSW EDFWHULD IUHH ,W LV LPSRUWDQW WKDW JHUPV DUH QRW
DEOH WR SHQHWUDWH WKH ZRXQG DQG WKH ZRXQG GRHV QRW GHVLFFDWH
$ PRLVW PLOLHX LV LPSRUWDQW IRU D IDVW ZRXQG KHDOLQJ @
,QVWHDG RI VWDSOHV RU VXWXUHV ODVHU UDGLDWLRQ FDQ EH XVHG WR
FORVH VNLQ LQFLVLRQV @ RU WR IL[DWH ZRXQG GUHVVLQJV 7R IL[DWH
FROODJHQ VFDIIROGV D VROGHU LV DSSOLHG EHWZHHQ GUHVVLQJ DQG
VNLQ DQG WKHQ KHDWHG E\ ODVHU UDGLDWLRQ WR WHPSHUDWXUHV DERYH
@ ,Q WKLV SURFHVV LW KDV WR WDNH SDUWLFXODU FDUH WKDW WKH
VNLQ XQGHU WKH GUHVVLQJ GRHV QRW KHDW XS WR PXFK 2WKHUZLVH
FDUERQL]DWLRQ GHOD\V ZRXQG KHDOLQJ 7R DYRLG WKHUPDO
GDPDJHV WKH ODVHU SRZHU KDV WR EH UHJXODWHG QRW WR H[FHHG D
SUHVHW WHPSHUDWXUH YDOXH
7KH TXDOLW\ RI WKH IL[DWLRQ RI ZRXQG GUHVVLQJ WR WKH VNLQ LV
HYDOXDWHG E\ PHDVXUHPHQW RI WKH SHHORII VWUHQJWK 7KH
PD[LPXP SHHO VWUHQJWK GHILQHV WKH ORDG ZKHQ WKH GUHVVLQJ
GHWDFKHV IURP WKH VNLQ ,Q RXU WHVWV ZH LQYHVWLJDWH LI WKH ERQG
VWUHQJWK RI WKH VROGHU FDQ EH HQKDQFHG E\ FURVVOLQNLQJ
DGGLWLYHV 7KH FKRVHQ VXEVWDQFHV UHVXOWHG LQ D VWURQJ
FURVVOLQNLQJ LQ RWKHU H[SHULPHQWV @ $OWKRXJK WKH DJHQW DUH
1LQD 7|GWHU 0HGL]LQLVFKH ,QJHQLHXUZLVVHQVFKDIW 8QLYHUVLW\ ]X /EHFN
WKH ZRUN KDV EHHQ FDUULHG RXW DW )UDXQKRIHU,QVWLWXWH RI /DVHU 7HFKQRORJ\
$DFKHQ WHO HPDLO QLQDWRHGWHU#PLZXQLOXHEHFNGH
'U 0DUWLQ :HKQHU LV ZLWK )UDXQKRIHU,QVWLWXWH IRU /DVHU 7HFKQRORJ\
$DFKHQ *HUPDQ\ WHO HPDLO
PDUWLQZHKQHU#LOWIUDXQKRIHUGH
'U 5DOI %ULQNPDQQ LV ZLWK ,QVWLWXWH RI %LRPHGLFDO 2SWLFV 8QLYHUVLW\ RI
/XHEHFN WHO HPDLO EULQNPDQQ#EPRXQLOXHEHFNGH
QRW DOO ELRFRPSDWLEOH EXW WKH UHVXOWV FDQ EH WDNHQ DV UHIHUHQFH
YDOXHV IRU XOWLPDWH FURVVOLQNLQJ 2QH RI WKH UHIHUHQFH DJHQWV LV
IRUPDOGHK\GH ZKLFK DOUHDG\ KDV EHHQ XVHG LQ RWKHU
H[SHULPHQWV ,W ZDV IRXQG RXW WKDW WKH FKHPLFDO UHDFWLRQV DUH
EDVHG RQ 6FKLII EDVHV ZKDW OHG WR D VWURQJ FURVVOLQNLQJ 7KH
GLVDGYDQWDJH RI )RUPDOGHK\GH LV WKDW LW DOZD\V OHDYHV
KD]DUGRXV UHVLGXHV @ @
,, 0
$7(5,$/ $1'
0
(7+2'6
)RU WKH H[SHULPHQWV SRUN ULQG IURP D ORFDO EXWFKHU DUWLILFLDO
VLON PHPEUDQHV IURP 6SLQWHF (QJLQHHULQJ *PE+ $DFKHQ @
ZLWK D WKLFNQHVV RI P DQG D VROGHU FRQVLVWLQJ RI SKRVSKDWH
EXIIHUHG VDOLQH 3%6 ZKLFK LV UHFHLYHG IURP 6LJPD$OGULFK
DQG ERYLQH VHUXP DOEXPLQ %6$ IURP DUO 5RWK *PE+
R .* .DUOVUXKH DUH XVHG )RU WKH VROGHU ILUVW D 3%6 WDEOHW LV
GLVVROYHG LQ ZDWHU WR VHW WKH S+YDOXH VWDQGDUGL]HG WR
LQVWHDG RI DURXQG RI ZDWHU ZLWKRXW 3%6 7KH VROGHU WKHQ
LV PDGH E\ PL[LQJ 3%6 DQG %6$ LQ D JODVV IODVN ZLWK D
PDJQHWLF VWLUUHU ZLWK USP DW URRP WHPSHUDWXUH ZKLOH
VWLUULQJ IDVWHU EXEEOHV RFFXU 7R DYRLG FORW IRUPDWLRQ %6$ LV
DGGHG LQ VPDOO SRUWLRQV ZLWK D VSDWXOD LQWR WKH 3%6 7R PL[ D
VROXWLRQ DURXQG HLJKW KRXUV RI VWLUULQJ DUH QHHGHG :KHQ
DOO %6$ LV GLVVROYHG WKH FORVHG IODVN LV VWRUHG LQ D IULGJH RYHU
QLJKW WR UHGXFH WKH IRDP ZKLFK IRUPHG GXULQJ SURGXFWLRQ
)RU WKH PRGLILFDWLRQ RI WKH VROGHU )RUPDOGHK\GH )$
*OXWDUDOGHK\GH *$ ERWK UHFHLYHG IURP $05(62 //
DQG 3RO\HWK\OHQH JO\FRO GLJO\FLG\O HWKHU 3(*'( IURP
6LJPD$OGULFK DUH XVHG )$ DQG 3(*'( DUH DGGHG WR WKH
3%6%6$ PL[WXUH VKRUWO\ EHIRUH VROGHULQJ WKH PHPEUDQH WR
WKH SRUN ULQG 7KH VROGHU ZLWK )$ FURVVOLQNV ZLWKRXW XVLQJ
ODVHU OLJKW ZLWKLQ D IHZ PLQXWHV WKHUHIRUH LW LV LPSRUWDQW WR DGG
)$ LPPHGLDWHO\ EHIRUH XVH $GGLQJ 3(*'( GRHV QRW LQGXFH
FRDJXODWLRQ ZLWKRXW LUUDGLDWLRQ 6R WKH VROGHU LV PL[HG EHIRUH
XVH DSSOLHG RQ WKH VNLQ WKHQ WKH PHPEUDQH LV SXW RQ LW DQG
DIWHUZDUGV WKH UDGLDWLRQ RI WKH ODVHU LV XVHG WR IL[DWH WKH
PHPEUDQH 7KH WKLUG PRGLILHG VROGHU LV PDGH ZLWK
*OXWDUDOGHK\G *$ :KHQ PL[LQJ LW LQ D VPDOO YHVVHO LW LV
FXUHG EHIRUH LW FDQ EH JRW RXW ZLWK D SLSHWWH ,Q WKLV FDVH WKH
VROGHU KDV WR EH PL[HG GLUHFWO\ RQ WKH VNLQ EHFDXVH RI WKH YHU\
IDVW FRDJXODWLRQ $IWHU PL[LQJ WKH PHPEUDQH LV GLUHFWO\ SXW
RQWR WKH VROGHU 7KH VDPH H[SHULPHQWV DUH FDUULHG RXW ZLWK WKH
3%6%6$ PL[WXUH +HUH WKH ODVHU LV DOWKRXJK QHHGHG WR LQGXFH
FRDJXODWLRQ RI WKH VROGHU DQG WKHUHIRUH D FURVVOLQN EHWZHHQ WKH
PHPEUDQH DQG WKH SRUN ULQG
)RU LUUDGLDWLRQ H[SHULPHQWV D ODVHU PRGXOH IURP ',/$6
'LRGHQODVHU *PE+ *HUPDQ\ LV XVHG 7KH ODVHU UDGLDWLRQ
IURP D GLRGH ODVHU EDU RI QP ZDYH OHQJWK LV FRXSOHG LQWR
D PXOWLPRGH ILEHU ZLWK P FRUH GLDPHWHU DQG P RI
OHQJWK %\ PDQ\ EHDP UHIOHFWLRQV LQVLGH WKH PXOWLPRGH ILEHU
Student Conference on Medical Engineering Science
2014
23


VROGHU GHQDWXUH DQG HQVXUH WKH OLQN EHWZHHQ PHPEUDQH DQG
VNLQ
7KH UHVXOWV RI WKH SHHORII WHVWV DUH VKRZQ LQ )LJ $V LW LV
WR UHFRJQL]H WKHUH LV QR VLJQLILFDQW GLIIHUHQFH LQ ERQG VWUHQJWK
EHWZHHQ WKH VROGHUV PL[HG ZLWK )$ *$ RU 3(*'( 7KH
DYHUDJH ERQG VWUHQJWK ZDV ORZHU WKDQ IRU VROGHU FRPSRVLWLRQ
RI RQO\ 3%6 DQG %6$ 6ROGHUV ZLWK DGGLWLYHV UHDFKLQJ D
PD[LPXP IRUFH RI DOPRVW 1 ZKHUHDV WKH %6$ VROGHU
ZLWKRXW DGGLWLYHV UHDFKHV D PD[LPXP DW 1 QHDUO\ WZLFH WKH
IRUFH RI WKH RWKHU VROGHUV
)LJ %R[SORW RI PHDVXUHG SHHORII VWUHQJWK VROGHUV ZLWK DGGLWLYHV UHDFKHV
FRQVLGHUDEO\ ORZHU IRUFHV WKDQ WKH VROGHU ZLWKRXW DGGLWLYHV 7KH H[SHULPHQWV
ZLWK %6$ VROGHU ZLWKRXW DGGLWLYHV DQG WKH VROGHU ZLWK 3(*'( DUH FDUULHG RXW
ZLWK ODVHU UDGLDWLRQ DQG WKH H[SHULPHQWV ZLWK VROGHU ZLWK )$ DQG *$ DUH
FDUULHG RXW ZLWKRXW ODVHU UDGLDWLRQ
7KH IDLOXUH PRGH RI VDPSOHV FDQ EH HYDOXDWHG E\
PLFURVFRSLF LPDJHV RI WKH VHSDUDWHG ERQG VXUIDFHV ,Q )LJ
DQG )LJ DUH VKRZQ WKH LPDJHV RI WKH H[SHULPHQWV ZLWK WKH
VROGHU RQO\ FRQVLVWLQJ RI 3%6 DQG E\ ZHLJKW %6$ )LJ
VKRZV WKH SRUN ULQG DIWHU WKH PHPEUDQH ZDV SHHOHG RII 7KH
SLFWXUH VKRZV FOHDUO\ WKDW WKHUH DUH SDUWV ZLWK DQG ZLWKRXW
VROGHU ,Q )LJ WKH PHPEUDQH RI WKH VDPH H[SHULPHQW WKDQ LQ
)LJ LV VKRZQ DOVR DIWHU WKH LPSOHPHQWDWLRQ RI WKH SHHORII
WHVW (YHQ KHUH UHVLGXHV RI WKH VROGHU FDQ EH VHHQ EXW WKHUH DUH
DOVR SDUWV ZKLFK DUH IUHH RI WKH VROGHU %RWK ILJXUHV VKRZ WKDW
WKH IDLOXUH LV FRKHVLYH 7KH WZR SDUWV ZKHUH QR VROGHU LV RQ WKH
ULQG DUURZV LQ )LJ FDQ EH H[SODLQHG E\ WKH GHIRUPDWLRQ RI
WKH VLON PHPEUDQH GXULQJ WKH UDGLDWLRQ SURFHVV :KHQ WKH
PHPEUDQH LV QRW KROG WR WKH SRUN ULQG ZLWK HQRXJK IRUFH LW
EHQGV XSZDUGV DQG LW FRPHV WR HQWUDSSHG DLU
7KH H[SHULPHQWV ZLWK WKH %6$ VROGHU PL[HG ZLWK
)RUPDOGHK\GH UHVXOWV LQ PLFURVFRSLF LPDJHV ZKHUH ODUJH
UHJLRQV ZLWK QR VROGHU RQ WKH SRUN ULQG FDQ EH VHHQ )LJ
7KH DUURZV LQ WKH SKRWR VKRZ WKH DUHD ZLWKRXW VROGHU 'XULQJ
WKH SHHORII WHVWV D ORW RI VROGHU FDPH RII RI WKH ULQG
5HJDUGLQJ WKH PHPEUDQHV RI WKHVH H[SHULPHQWV LW LV
UHFRJQL]DEOH WKDW D ORW RI VROGHU UHPDLQV RQ WKH PHPEUDQHV
7KH GLVWULEXWLRQ RI VROGHU RQ WKH PHPEUDQHV DQG SRUN ULQGV
VKRZV DQ DGKHVLYH IDLOXUH 7KDW PHDQV WKDW WKH VROGHU OD\HU
SDUWO\ GHWDFKHV IURP WKH SRUN ULQG 7KH RSSRVLWH RI DQ
DGKHVLYH IDLOXUH LV WKH FRKHVLYH IDLOXUH ZKHUH WKH IDLOXUH
RFFXUV LQ RQH PDWHULDO ,Q WKH SHUIRUPHG H[SHULPHQWV WKDW
PHDQV WKH EUHDNDJH RFFXUV LQ WKH VROGHU
0RUH H[SHULPHQWV ZHUH GRQH ZLWK WKH VROGHU PL[HG ZLWK
*OXWDUDOGHK\GH +HUH WKH REVHUYDWLRQ VKRZV WKDW RQ WKH SRUN
ULQG LV D ODUJH FRQWLQXRXV DUHD ZLWK VROGHU )XUWKHUPRUH WKH
VROGHU FKDQJHG LW FRORU 2Q WKH PHPEUDQH WKHUH DUH RQO\ D IHZ
UHVLGXHV 7KH PLFURVFRSLF SLFWXUHV LPSO\ DQ DGKHVLYH IDLOXUH
DV UHVXOW RI WKH SHHORII WHVWV ,W FDQ EH VHHQ WKDW RQO\ WKH HGJH
RI WKH VROGHU FDPH D OLWWOH ELW ORVH GXULQJ WKH H[SHULPHQWV
0RVW SDUW RI WKH VROGHU VWD\HG RQ WKH ULQG 5HVLGXDO VROGHU
SDUWLFOHV RQ WKH PHPEUDQH VKRZ VOLJKWO\ GLVFRORUDWLRQ 7KH
FRORU LV PRUH \HOORZ WKDQ LQ DOO RWKHU H[SHULPHQWV 7KLV
SKHQRPHQRQ LV SUREDEO\ FRQQHFWHG WR WKH DGGLWLRQ RI
*OXWDUDOGHK\GH EHFDXVH DOO RWKHU SDUDPHWHUV DUH WKH VDPH WKDQ
LQ WKH H[SHULPHQWV ZKHUH WKH VROGHU GRHV QRW FKDQJH LW FRORU
%XW WKH GLIIHUHQW FRORU GRHV QRW FKDQJH WKH VWUHQJWK SURSHUWLHV
RI WKH VROGHU FRPSDUHG WR WKH RWKHU VROGHUV ZLWK DGGLWLYHV
)LJ 3RUN ULQG DIWHU WKH SHHORII WHVW VROGHU ZLWKRXW DGGLWLYHV WKH PDUNHG
DUHDV LQ WKH PLGGOH VKRZ QR VROGHU DUURZV 7KLV KDSSHQV EHFDXVH RI WKH
GHIRUPDWLRQ RI WKH VLON PHPEUDQH GXULQJ WKH VROGHULQJ SURFHVV
)LJ 0HPEUDQH DIWHU WKH SHHORII WHVW VROGHU ZLWKRXW DGGLWLYHV D ORW RI
VROGHU LV UHWDUGHG ZKLFK LV D VLJQ IRU D FRKHVLYH IDLOXUH
7KH UHVXOWV RI WKH SHHORII WHVWV ZLWK VROGHU PL[HG ZLWK
3(*'( VKRZ WKDW WKH VROGHU VWD\HG RQ ERWK WKH PHPEUDQH
DQG WKH SRUN ULQG 7KHUHIRUH LQ WKLV FDVH LW LV D FRKHVLYH IDLOXUH
OLNH LQ WKH H[SHULPHQWV ZKHUH WKH VWDQGDUG VROGHU ZDV XVHG
7KH ZHDNHVW SDUW RI WKLV H[SHULPHQW LV WKH VROGHU LWVHOI DQG
WKHUH LV DOVR QR GLVFRORUDWLRQ RI WKH VROGHU 7KH UHVXOWV DUH WKH
0
1
2
3
4
5
BSA solder
without
additives
Solder with
FA
Solder with
GA
Solder with
PEGDE
E
Z
Excerpt out of 291 pages

Details

Title
Student Conference Medical Engineering Science 2014
Subtitle
Proceedings
College
University Lübeck
Course
Studierendentagung
Author
Year
2014
Pages
291
Catalog Number
V268650
ISBN (eBook)
9783656596509
ISBN (Book)
9783656596486
File size
101500 KB
Language
English
Notes
Autor: T. M. Buzug et al. Datei ist ein Dummy, korrekte Version folgt individuelles Cover folgt Bitte der Reihe Student Conference on Medical Engineering Science V200266 zuordnen Format A4, Cover und einzelne Seiten in Farbe
Keywords
Biomedical Engineering, X-Ray and Computed Tomography, Magnetic Particle Imaging, Magnetic Resonance Imaging, Biomedical Optics, Medical Image Computing, Biochemical Physics, Signal Processing, Imaging and Image Computing, LUMEN, Medisert
Quote paper
T. M. Buzug et al. (Author), 2014, Student Conference Medical Engineering Science 2014, Munich, GRIN Verlag, https://www.grin.com/document/268650

Comments

  • No comments yet.
Look inside the ebook
Title: Student Conference Medical Engineering Science 2014



Upload papers

Your term paper / thesis:

- Publication as eBook and book
- High royalties for the sales
- Completely free - with ISBN
- It only takes five minutes
- Every paper finds readers

Publish now - it's free