Lade Inhalt...

Clusteranalyse - Eine kurze Einführung

Seminararbeit 2009 13 Seiten

Mathematik - Statistik

Leseprobe

Inhalt

1. Einführung

2. Definition

3. Einsatzgebiete

4. Proximitätsmaße
4.1 Distanzmaße
4.2 Ähnlichkeitsmaße

5. Klassifikationen
5.1 Scharfe Klassifikation
5.1.1 Allgemeine Information
5.1.2 Hierarchische Verfahren
5.1.3 Partitionierte Verfahren
5.2 Unscharfe Klassifikation

6. Vereinfachte Clusteranalyse mit Excel

7. Fazit

Literaturverzeichnis

Abbildung 1: Gruppeneinteilung

Abbildung 2: Distanzmatrix nach der quadrierten Euklidischen Distanz

Abbildung 3: Distanzen

Abbildung 4: Baum der gängigen Clusterverfahren

Abbildung 5: Single Linkage Verfahren

Abbildung 6: Complete Linkage Verfahren

Abbildung 7: Average Linkage Verfahren

Abbildung 8: "Ellenbogen" zur Bestimmung der optimalen Klassenanzahl

1. Einführung

Die vorliegende Arbeit gibt einen Überblick fiber die Clusteranalyse und ihre gängigsten Methoden. Sie gibt einen Einblick in die Anwendungsbereiche, wie z.B. in der Marketingabteilung eines Unternehmens, und die Anwendungsarten. Besonders wird, im letzten Kapitel, auf die Möglichkeit eingegangen eine Clusteranalyse mit Excel zu erstellen.

2. Definition

Das Clusteranalyseverfahren stammt aus den 50er Jahren.1

Clusteranalyse ist ein Sammelbegriff. Hinter diesem Sammelbegriff stehen eine Reihe an Methoden, welche dazu dienen innerhalb einer heterogenen Menge Objekten homogene Teilmengen zu identifizieren.2

Abbildung in dieser Leseprobe nicht enthalten

Abbildung 1: Gruppeneinteilung

Diese Teilmengen werden in Gruppen zusammengefasst. Diese Gruppen werden Cluster genannt. Diese Cluster sollten sich möglichst stark voneinander unterscheiden, während die Objekte in den Clustern sich möglichst ähnlich sein sollten. Diese Ähnlichkeiten mfissen genau gemessen werden können, um eine Einteilung in Cluster ermöglichen zu können.3 Des Weiteren muss entschieden werden welche Ähnlichkeiten in die Bewertung eingezogen werden. So besteht zunächst die Möglichkeit eine Gruppe Menschen z.B. in zwei Gruppen, Mann und Frau, einzuteilen. Dies ist jedoch in einigen Fällen nicht genau genug und auch nicht sehr aussagefähig. Somit muss eine Kombination mehrere Merkmale gewählt werden wie z.B. Alter, Wohnort, Einkommen.4

Das grundlegende Ziel der Cluster ist es eine vereinfachte übersichtliche Struktur zu schaffen sowie Zusammenhänge innerhalb der Daten leicht erkennen zu können.5

3. Einsatzgebiete

Die Clusteranalyse wird in verschiedenen Bereichen eingesetzt. Unter anderem in der Medizin oder Biologie oder auch in der Wirtschaft. In der Wirtschaft wird mit Hilfe der Clusteranalyse z.B. Kundengruppen erkannt, Zusammenfassung und Vergleich gleichartiger Produkte oder auch die Bewertung von Arbeitsplätzen.6 Hauptsächlich findet die Clusteranalyse ihr Einsatzgebiet in der Marketingabteilung. So lassen sich z.B. in der Reisebranche diverse Touristen-Cluster erstellen, die wie folgt aussehen könnten:

- Die Fordernende, welche im Urlaub exzellenten Service haben und verwöhnt werden wollen.
- Die Flüchtigen, welche einfach nur entfliehen und sich entspannen wollen.
- Die Gebildeten, welche neue Kulturen kennenlernen wollen oder Museen besuchen wollen.7

4. Proximitätsmaße

4.1 Distanzmaße

Die Distanzmaße messen die Unähnlichkeiten zwischen zwei Objekten. Je größer der Wert des Distanzmaßes, desto unähnlicher sind die Objekte.8 Sie werden bei metrischen Daten angewendet.9 Als Grundvoraussetzung für jede Clusteranalyse muss zunächst eine Distanzmatrix erstellt werden. Diese Distanzmatrix stellt alle möglichen Verbindungen zwischen den einzelnen Objekten dar.10

Abbildung in dieser Leseprobe nicht enthalten

Abbildung 2: Distanzmatrix nach der quadrierten Euklidischen Distanz11

Es gibt mehrere verschiedene Arten die Distanz zu berechnen. Die am häufigsten benutzten Distanzarten sind:

- Euklidische Distanz
- City-Block-Distanz

- Tschebyscheff Distanz

Abbildung in dieser Leseprobe nicht enthalten

Abbildung 3: Distanzen

Um diese Distanzen zu berechnen werden folgende Berechnungen verwendet (d = Heterogenitätsmaß):

Abbildung in dieser Leseprobe nicht enthalten

Diese Berechnungen werden verwendet wenn der absolute Abstand zwischen den Objekten von Interesse ist.12

[...]


1 Vgl. http://imihome.imi.uni-karlsruhe.de/nclusteranalyse_b.html

2 http://imihome.imi.uni-karlsruhe.de/nclusteranalyse_b.html

3 Vgl. http://marktforschung.wikia.com/wiki/Clusteranalyse

4 Vgl. http://www.molar.unibe.ch/help/statistics/SPSS/28_Clusteranalyse.pdf

5 Vgl. http://www.crgraph.de/Clusteranalyse.pdf

6 Vgl. http://www.i-med.ac.at/msig/lehre/lehrunterlagen/ss07/2007_clusteranalyse.pdf

7 Vgl. http://en.wikipedia.org/wiki/Cluster_analysis_(in_marketing)

8 http://imihome.imi.uni-karlsruhe.de/nclusteranalyse_b.html

9 Vgl. http://www.wirtschaftslexikon24.net/d/aehnlichkeitsmasse/aehnlichkeitsmasse.htm

10 Vgl. http://marktforschung.wikia.com/wiki/Clusteranalyse

11 http://public.univie.ac.at/fileadmin/user_upload/lehrstuhl_marketing/Dokumente_Mitarbeiter/Heri bert_Reisinger/Lehre/Salzburg/seminar09_clusteranalyse.pdf

12 http://www.statoek.wiso.uni-goettingen.de/veranstaltungen/graduateseminar/clusteranalyse.pdf

Details

Seiten
13
Jahr
2009
ISBN (eBook)
9783640483143
ISBN (Buch)
9783640483358
Dateigröße
556 KB
Sprache
Deutsch
Katalognummer
v138819
Institution / Hochschule
Hochschule Bochum
Note
2,3
Schlagworte
Clusteranalyse

Autor

Zurück

Titel: Clusteranalyse - Eine kurze Einführung