Lade Inhalt...

Zufallsstichproben, Schätzen und Testen anhand von Notenverteilungen

von Sina Hagel (Autor) Christine Schult (Autor)

Hausarbeit 2001 46 Seiten

Mathematik - Statistik

Leseprobe

Gliederung

1 Einleitung
1.1 Ansatz der Hausarbeit
1.2 Voraussetzungen / Bedingungen

2 Prüfung der Voraussetzungen / Bedingungen
2.1 Zufallsstichprobe
2.2 Normalverteilung der Grundgesamtheit
2.3 Zentraler Grenzwertsatz

3 Schätzen von Parametern
3.1 Punktschätzung
3.2 Intervallschätzung
3.2.1 Der Vertrauensbereich für den Mittelwert (Erwartungswert einer normalverteilten Grundgesamtheit)
3.2.1.1 Der Vertrauensbereich für den Mittelwert bei gegebener Varianz s² der Grundgesamtheit
3.2.1.2 Länge des Konfidenzintervalls bei bekannter Varianz s²
3.2.1.3 Notwendiger Stichprobenumfang bei bekannter Varianz s²
3.2.1.4 Der Vertrauensbereich für den Mittelwert bei unbekannter Varianz s² der Grundgesamtheit
3.2.1.5 Vergleich der Länge von Konfidenzintervallen bezüglich des unbekannten Parameters µ
3.2.1.6 Notwendiger Stichprobenumfang bei unbekannter Varianz s²
3.2.2 Interpretation / Bewertung von Vertrauensbereichen

4 Testen von Parametern
4.1 Einführung
4.2 Konzeption von Parametertests
4.3 Testen des arithmetischen Mittels bei unbekannter Varianz s² der Grundgesamtheit
4.4 Testen des arithmetischen Mittels bei bekannter Varianz s² der Grundgesamtheit

Tabellenverzeichnis

Tabelle 1: Standardnormalverteilung N(0,1)

Tabelle 2: Prozentpunkte der N(0,1) Verteilung

Tabelle 3: t-Verteilung (einseitige Fragestellung)

Tabelle 4: t-Verteilung (zweiseitige Fragestellung)

Tabelle 5: Chi-Quadrat-Verteilung

Tabelle 6: Punktschätzung unbekannter Parameter

Tabelle 7: Übersicht von Grundgesamtheit und Stichprobe der Mathematik- Klausur

Tabelle 8: Fehler beim Testen von Hypothesen und deren Wahrscheinlichkeiten

Abbildungsverzeichnis

Abbildung 1: Fragebogen zum Lernverhalten

Abbildung 2: BWL - Notenspiegel nach Fragebögen

Abbildung 3: BWL - Notenspiegel der gesamten Klausuren

Abbildung 4: EDV - Notenspiegel nach Fragebögen

Abbildung 5: EDV - Notenspiegel der gesamten Klausuren

Abbildung 6: Business Administration - Notenspiegel nach Fragebögen

Abbildung 7: Business Administration - Notenspiegel der gesamten Klausuren

Abbildung 8: Notenspiegel Mathematik-Klausur

Abbildung 9: Ausschnitt einer Zufallszahlentafel

Abbildung 10: Notenspiegel Stichprobe der Mathematik-Klausur

Abbildung 11: Verteilungstest bis zur empirischen Verteilungsfunktion

Abbildung 12: Verteilungstest bis zu erwarteten absoluten Häufigkeiten

Verzeichnis der Anhänge

Anhang 1: Tabelle 1

Anhang 2: Tabelle 2

Anhang 3: Tabelle 3

Anhang 4: Tabelle 4

Anhang 5: Tabelle 5

1 Einleitung

1.1 Ansatz der Hausarbeit

Für unsere Hausarbeit im Rahmen der Schließenden Statistik haben wir im Vorfeld Mitstudenten, die im Wintersemesters 2000/2001 ihr Studium begonnen haben, zu ihrem Lernverhalten und den daraus resultierenden Klausur- bzw. Leistungsnachweisergebnissen befragt. Wir beschränkten uns bei der Auswahl der Fächer auf „Einführung in die BWL“, „Einführung in die Wirtschaftsinformatik“ und „Business Administration“.

Von 42 ausgegebenen Fragebögen (Abbildung 1) haben wir 37 zurückerhalten. Von diesen waren wiederum 34 verwertbar. Zum Vergleich wurden die tatsächlich erreichten Klausur- bzw. Leistungsnachweisnoten herangezogen.

Herr Jürgen Gottschalk vom Prüfungsamt des Fachbereichs Wirtschaft händigte uns folgende Ergebnisse aus: 2. Prüfungstermin im Wintersemester 2000/2001 bzw. 1. Prüfungstermin im Sommersemester 2001 für „Einführung in die BWL“; 2. Prüfungstermin im Wintersemester 2000/2001 für „Einführung in die Wirtschaftsinformatik“ und 2. Prüfungstermin im Wintersemester 2000/2001 für „Business Administration“. Die Abbildungen 2 bis 7 spiegeln die aufgetretenen Häufigkeiten der jeweiligen Noten wider.

Anhand dieser Daten sollte eine Prüfung stattfinden, ob unsere Stichprobe mit der Gesamtheit der jeweiligen Klausurnoten im Einklang steht. Weiterhin wollten wir Parameter der gesamten Benotungen aufgrund der erfragten Daten schätzen.

Optisch lassen sich jedoch keine Zusammenhänge zwischen den erfragten und der Gesamtheit der Benotungen vermuten.

Abbildung 1: Fragebogen zum Lernverhalten

Abbildung in dieser Leseprobe nicht enthalten

Abbildung 2

Abbildung in dieser Leseprobe nicht enthalten

Abbildung 3

Abbildung in dieser Leseprobe nicht enthalten

Abbildung 4

Abbildung in dieser Leseprobe nicht enthalten

Abbildung 5

Abbildung in dieser Leseprobe nicht enthalten

Abbildung 6

Abbildung in dieser Leseprobe nicht enthalten

Abbildung 7

Abbildung in dieser Leseprobe nicht enthalten

1.2 Voraussetzungen / Bedingungen

Um diese Vorhaben des Schätzens und Testens von Parametern realisieren zu können, müssen jedoch folgende Voraussetzungen erfüllt sein:

1. Die der Grundgesamtheit entnommene Stichprobe muss explizit eine Zufallsstichprobe sein.
2. Die zugrundeliegende Gesamtheit muss angenähert normalverteilt sein.
3. Kann man über die Verteilung der Grundgesamtheit keine Aussagen treffen, muss der Stichprobenumfang n ³ 100 betragen. Ist diese Bedingung erfüllt, lässt sich der Zentrale Grenzwertsatz anwenden. Dieser besagt, dass die Verteilung einer Zufallsvariable X als Funktion von n unabhängigen, identisch verteilten Zufallsvariablen Xi gleicher Größenordnung mit wachsendem Stichprobenumfang gegen eine Normalverteilung strebt. (Die Verteilung eines arithmetischen Mittels Xq als Funktion von n unabhängigen, identisch verteilten Zufallsvariablen Xq1 ... Xqn strebt gegen eine Normalverteilung mit dem Erwartungswert E(Xq) = µ und der Varianz Var(Xq) = s² n . )

Die Erfüllung dieser Bedingungen soll im Folgenden geprüft werden.

2 Prüfung der Voraussetzungen / Bedingungen

2.1 Zufallsstichprobe

Bedingung 1: Die der Grundgesamtheit entnommene Stichprobe muss explizit eine Zufallsstichprobe sein.

Unter Zuhilfenahme von Zufallsstichproben lassen sich Schlüsse, sogenannte Wahrscheinlichkeitsaussagen, auf eine zugehörige Grundgesamtheit ziehen. Die relative Häufigkeit fi der in der Grundgesamtheit auftretenden Merkmale entspricht der Wahrscheinlichkeit dieser Merkmale in einer Stichprobe gezogen zu werden. Voraussetzung für das Vorliegen einer Zufallsstichprobe ist die gleiche Chance, d. h. Wahrscheinlichkeit P > 0, eines Elements der Grundgesamtheit ausgewählt zu werden. Weiterhin muss die Unabhängigkeit der Beobachtungen gegeben sein. Das entspräche dem Urnenmodell der Stichprobenentnahme mit Zurücklegen: Das gezogene Element wird der Grundgesamtheit wieder zugeführt. Somit ändert sich deren Zusammensetzung nicht und jedes Element besitzt wieder die gleiche Chance, d. h. Wahrscheinlichkeit, gezogen zu werden.

Unter Beachtung dieser Voraussetzungen gewinnt man einen repräsentativen Teil einer Grundgesamtheit, deren vollständige Erhebung zeitlich zu aufwendig wäre oder praktisch nicht sinnvoll ist. So wäre es z. B. äußerst unsinnig, die gesamte Tagesproduktion einer Hühner-Legebatterie zu öffnen, um einen Anteil an faulen Eiern zu ermitteln.

Mit Hilfe aus Stichproben berechneter Schätzwerte (z. B. arithmetisches Mittel xq, Stichprobenvarianz s²) schließt man auf Parameter einer Grundgesamtheit (z. B. arithmetisches Mittel µ, Varianz s²). Sind diese Stichproben jedoch keine Zufallsstichproben, lassen sich aus diesen lediglich zur Beschreibung der Daten sogenannte statistische Maßzahlen ermitteln (Sachs 1999: 98) – keine Schätzwerte zur Durchführung statistischer Schätz- bzw. Testverfahren.

Diese Problematik erkannten wir jedoch erst, nachdem die Befragungen bereits durchgeführt waren. Im Nachhinein haben wir festgestellt, dass wir uns bei der Teilerhebung des Verfahrens der bewussten Auswahl bedient haben. Dabei wird versucht, die in die Stichprobe aufzunehmenden Elemente so auszuwählen, dass diese einen modellgerechten Querschnitt der Grundgesamtheit wiedergeben. Die vollständigen Klausurergebnisse der

Fächer „Einführung in die BWL“, „Einführung in die Wirtschaftsinformatik“ und „Business Administration“ bildeten unsere eingegrenzte Grundgesamtheit. Um eine „repräsentative“ Stichprobe zu erhalten, befragten wir in einem Interview (wenn dieser Begriff als Synonym für das Verteilen der Fragebögen benutzt wird) einen Teil unserer Mitstudenten. Innerhalb eines bestimmten Rahmens – die Klausuren / Leistungsnachweise sollten von den Befragten zum Ende des Wintersemesters 2000/2001 bzw. zum Beginn des Sommersemesters 2001 geschrieben worden sein – hatten wir jedoch freie Auswahl bei den zu befragenden Personen. Aufgrund dabei wirkender subjektiver Auswahlmomente (z. B. die bevorzugte Ansprache von Freunden) lassen sich keine fundierten Aussagen über die Zuverlässigkeit der Ergebnisse treffen.

Die Quintessenz dieser Ausführungen: Da sich die erste Voraussetzung für statistische Schätz- und Testverfahren von Parametern als nicht erfüllt erwiesen hat, können unsere Daten nicht verwendet werden.

Die geforderte Stichprobe kann durch verschiedene Verfahren erzeugt werden. Die einfachste – allerdings auch eher unzweckmäßige – Methode ist das Losverfahren: Die durchnummerierten Elemente einer Grundgesamtheit werden durch „Ziehen aus einem Lostopf“ bestimmt. Eleganter löst man die Auswahl der durchnummerierten Elemente über eine Zufallszahlentafel. Solch eine Zufallszahlentafel besteht lediglich aus der Folge der zufällig aneinandergereihten Ziffern 0-9. Sie lässt sich durch einen Zufallsgenerator erzeugen oder mit Hilfe einer mathematischen Formel errechnen. Mit der rechnerischen Variante werden sogenannte Pseudozufallsziffern erzeugt. Diese werden so bezeichnet, weil sich periodische Folgen ergeben und sich somit die Zufallsziffern wiederholen. Das wiederum ist jedoch nicht so problematisch, da im Allgemeinen sehr lange Perioden erzeugt werden.

Beispielhaft sei hier eine Zufallszahlentabelle angeführt (Sachs 1999: 101). In dieser wurden jeweils fünfstellige Zahlengruppen notiert. Man liest die Zahlen von links nach rechts, beginnend mit irgendeiner zufällig gewählten Zahl in der Tabelle. Gelesen werden Zahlen mit z-stelligen Ziffern. Die Variable z richtet sich nach der Menge der Ziffern der Anzahl N der Elemente der Grundgesamtheit.

Zur Veranschaulichung wird das Lesen dieser Tabelle am Beispiel erläutert: In einem verwertbaren Beispiel einer annähernd normalverteilten Grundgesamtheit wurden N = 1000 Schüler nach Klausurnoten im Fach Mathematik befragt. Mögliche Ausprägungen dieses Merkmals sind die Noten 1, 2, 3, 4, 5.

Abbildung 8

Abbildung in dieser Leseprobe nicht enthalten

Jeder angegebenen Klausurnote wurde eine Ordnungsziffer zwischen 0001 und 1000 zugeteilt. Man beginnt an einer beliebigen Stelle der Tabelle zu lesen.

Abbildung 9: Ausschnitt einer Zufallszahlentafel

Abbildung in dieser Leseprobe nicht enthalten

Quelle: Sachs 1999: 101

Die erste Ziffern-Kombination 8977 ist bereits größer als N und somit außer acht zulassen. Die folgende Ziffern-Kombination 6040 ist ebenfalls größer als N und folglich auch nicht verwertbar.

Details

Seiten
46
Jahr
2001
Dateigröße
473 KB
Sprache
Deutsch
Katalognummer
v103252
Institution / Hochschule
Fachhochschule Kiel
Note
1,7
Schlagworte
Zufallsstichproben Schätzen Testen Notenverteilungen Schließende Statistik

Autoren

Teilen

Zurück

Titel: Zufallsstichproben, Schätzen und Testen anhand von Notenverteilungen